465 research outputs found

    Natural HLA Class I Polymorphism Controls the Pathway of Antigen Presentation and Susceptibility to Viral Evasion

    Get PDF
    HLA class I polymorphism creates diversity in epitope specificity and T cell repertoire. We show that HLA polymorphism also controls the choice of Ag presentation pathway. A single amino acid polymorphism that distinguishes HLA-B*4402 (Asp116) from B*4405 (Tyr116) permits B*4405 to constitutively acquire peptides without any detectable incorporation into the transporter associated with Ag presentation (TAP)-associated peptide loading complex even under conditions of extreme peptide starvation. This mode of peptide capture is less susceptible to viral interference than the conventional loading pathway used by HLA-B*4402 that involves assembly of class I molecules within the peptide loading complex. Thus, B*4402 and B*4405 are at opposite extremes of a natural spectrum in HLA class I dependence on the PLC for Ag presentation. These findings unveil a new layer of MHC polymorphism that affects the generic pathway of Ag loading, revealing an unsuspected evolutionary trade-off in selection for optimal HLA class I loading versus effective pathogen evasion

    ADAM22/LGI1 complex as a new actionable target for breast cancer brain metastasis

    Get PDF
    Background: Metastatic breast cancer is a major cause of cancer-related deaths in woman. Brain metastasis is a common and devastating site of relapse for several breast cancer molecular subtypes, including oestrogen receptor-positive disease, with life expectancy of less than a year. While efforts have been devoted to developing therapeutics for extra-cranial metastasis, drug penetration of blood–brain barrier (BBB) remains a major clinical challenge. Defining molecular alterations in breast cancer brain metastasis enables the identification of novel actionable targets.Methods: Global transcriptomic analysis of matched primary and metastatic patient tumours (n = 35 patients, 70 tumour samples) identified a putative new actionable target for advanced breast cancer which was further validated in vivo and in breast cancer patient tumour tissue (n = 843 patients). A peptide mimetic of the target's natural ligand was designed in silico and its efficacy assessed in in vitro, ex vivo and in vivo models of breast cancer metastasis.Results: Bioinformatic analysis of over-represented pathways in metastatic breast cancer identified ADAM22 as a top ranked member of the ECM-related druggable genome specific to brain metastases. ADAM22 was validated as an actionable target in in vitro, ex vivo and in patient tumour tissue (n = 843 patients). A peptide mimetic of the ADAM22 ligand LGI1, LGI1MIM, was designed in silico. The efficacy of LGI1MIM and its ability to penetrate the BBB were assessed in vitro, ex vivo and in brain metastasis BBB 3D biometric biohybrid models, respectively. Treatment with LGI1MIM in vivo inhibited disease progression, in particular the development of brain metastasis.Conclusion: ADAM22 expression in advanced breast cancer supports development of breast cancer brain metastasis. Targeting ADAM22 with a peptide mimetic LGI1MIM represents a new therapeutic option to treat metastatic brain disease

    Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells

    Get PDF
    Susceptibility and protection against human autoimmune diseases, including type I diabetes, multiple sclerosis, and Goodpasture disease, is associated with particular human leukocyte antigen (HLA) alleles. However, the mechanisms underpinning such HLA-mediated effects on self-tolerance remain unclear. Here we investigate the molecular mechanism of Goodpasture disease, an HLA-linked autoimmune renal disorder characterized by an immunodominant CD4+ T-cell self-epitope derived from the α3 chain of type IV collagen (α3135–145)1,2,3,4. While HLA-DR15 confers a markedly increased disease risk, the protective HLA-DR1 allele is dominantly protective in trans with HLA-DR15 (ref. 2). We show that autoreactive α3135–145-specific T cells expand in patients with Goodpasture disease and, in α3135–145-immunized HLA-DR15 transgenic mice, α3135–145-specific T cells infiltrate the kidney and mice develop Goodpasture disease. HLA-DR15 and HLA-DR1 exhibit distinct peptide repertoires and binding preferences and present the α3135–145 epitope in different binding registers. HLA-DR15-α3135–145 tetramer+ T cells in HLA-DR15 transgenic mice exhibit a conventional T-cell phenotype (Tconv) that secretes pro-inflammatory cytokines. In contrast, HLA-DR1-α3135–145 tetramer+ T cells in HLA-DR1 and HLA-DR15/DR1 transgenic mice are predominantly CD4+Foxp3+ regulatory T cells (Treg cells) expressing tolerogenic cytokines. HLA-DR1-induced Treg cells confer resistance to disease in HLA-DR15/DR1 transgenic mice. HLA-DR15+ and HLA-DR1+ healthy human donors display altered α3135–145-specific T-cell antigen receptor usage, HLA-DR15-α3135–145 tetramer+ Foxp3− Tconv and HLA-DR1-α3135–145 tetramer+ Foxp3+CD25hiCD127lo Treg dominant phenotypes. Moreover, patients with Goodpasture disease display a clonally expanded α3135–145-specific CD4+ T-cell repertoire. Accordingly, we provide a mechanistic basis for the dominantly protective effect of HLA in autoimmune disease, whereby HLA polymorphism shapes the relative abundance of self-epitope specific Treg cells that leads to protection or causation of autoimmunity

    Resolving the ancestry of Austronesian-speaking populations

    Get PDF
    There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The “out-of-Taiwan” model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Genomic Risk Profiling of Ischemic Stroke: Results of an International Genome-Wide Association Meta-Analysis

    Get PDF
    Introduction: Familial aggregation of ischemic stroke derives from shared genetic and environmental factors. We present a meta-analysis of genome-wide association scans (GWAS) from 3 cohorts to identify the contribution of common variants to ischemic stroke risk.Methods: This study involved 1464 ischemic stroke cases and 1932 controls. Cases were genotyped using the Illumina 610 or 660 genotyping arrays; controls, with Illumina HumanHap 550Kv1 or 550Kv3 genotyping arrays. Imputation was performed with the 1000 Genomes European ancestry haplotypes (August 2010 release) as a reference. A total of 5,156,597 single-nucleotide polymorphisms (SNPs) were incorporated into the fixed effects meta-analysis. All SNPs associated with ischemic stroke (P < 1 x 10(-5)) were incorporated into a multivariate risk profile model.Results: No SNP reached genome-wide significance for ischemic stroke (P < 5 x 10(-8)). Secondary analysis identified a significant cumulative effect for age at onset of stroke (first versus fifth quintile of cumulative profiles based on SNPs associated with late onset, beta = 14.77 [10.85, 18.68], P = 5.5 x 10(-12)), as well as a strong effect showing increased risk across samples with a high propensity for stroke among samples with enriched counts of suggestive risk alleles (P < 5 x 10(-6)). Risk profile scores based only on genomic information offered little incremental prediction.Discussion: There is little evidence of a common genetic variant contributing to moderate risk of ischemic stroke. Quintiles based on genetic loading of alleles associated with a younger age at onset of ischemic stroke revealed a significant difference in age at onset between those in the upper and lower quintiles. Using common variants from GWAS and imputation, genomic profiling remains inferior to family history of stroke for defining risk. Inclusion of genomic (rare variant) information may be required to improve clinical risk profiling

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore