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Abstract

Introduction: Familial aggregation of ischemic stroke derives from shared genetic and environmental factors. We present a
meta-analysis of genome-wide association scans (GWAS) from 3 cohorts to identify the contribution of common variants to
ischemic stroke risk.

Methods: This study involved 1464 ischemic stroke cases and 1932 controls. Cases were genotyped using the Illumina 610
or 660 genotyping arrays; controls, with Illumina HumanHap 550Kv1 or 550Kv3 genotyping arrays. Imputation was
performed with the 1000 Genomes European ancestry haplotypes (August 2010 release) as a reference. A total of 5,156,597
single-nucleotide polymorphisms (SNPs) were incorporated into the fixed effects meta-analysis. All SNPs associated with
ischemic stroke (P,161025) were incorporated into a multivariate risk profile model.

Results: No SNP reached genome-wide significance for ischemic stroke (P,561028). Secondary analysis identified a
significant cumulative effect for age at onset of stroke (first versus fifth quintile of cumulative profiles based on SNPs
associated with late onset, ß = 14.77 [10.85,18.68], P = 5.5610212), as well as a strong effect showing increased risk across
samples with a high propensity for stroke among samples with enriched counts of suggestive risk alleles (P,561026). Risk
profile scores based only on genomic information offered little incremental prediction.

Discussion: There is little evidence of a common genetic variant contributing to moderate risk of ischemic stroke. Quintiles
based on genetic loading of alleles associated with a younger age at onset of ischemic stroke revealed a significant
difference in age at onset between those in the upper and lower quintiles. Using common variants from GWAS and
imputation, genomic profiling remains inferior to family history of stroke for defining risk. Inclusion of genomic (rare variant)
information may be required to improve clinical risk profiling.
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Introduction

Ischemic stroke is known to aggregate in families. The observed

familial aggregation is believed to be the result of shared genetic

and environmental factors. The true extent of familial aggregation

remains unknown, as many individuals who would develop

ischemic stroke in later ages may succumb to other morbid

conditions, thereby reducing the estimated familial risk. Nonethe-

less, there are consistent and compelling data that suggest genetic

factors play a major role in risk of ischemic stroke.

Ischemic stroke is clinically heterogeneous, with multiple

etiologic pathways contributing to risk. There is increasing

evidence from genetic studies supporting the hypothesized

heterogeneity of ischemic stroke [1]. Many candidate genes have

been examined for risk of ischemic stroke, and several Mendelian

disorders (e.g., CADASIL and Fabry disease) have been associated

with stroke risk. Additionally, genome-wide approaches have

identified several additional loci associated with stroke risk. The

well-documented chromosome 9p21 locus associated with myo-

cardial infarction also has been shown to be a risk factor for large
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vessel (atherosclerotic) ischemic stroke [2]. The 4q25 locus near

the PITX2 gene that is associated with atrial fibrillation is also

associated with cardioembolic stroke [3]. Variants in the ZFHX3

gene on chromosome 16q22 associate with both atrial fibrillation

and cardioembolic stroke [4].

This study involves collaboration among three clinical stroke

cohorts comprising two independent datasets that have been

subjected to genome-wide association scans. Imputation to greater

than 5 million SNPs was performed to permit meta-analysis of

association with ischemic stroke and secondary analyses of SNP

associations with presumed stroke etiology (subtype) and age at

stroke onset. No SNP exhibited genome-wide significant levels of

association with ischemic stroke. Risk profiling to identify possible

genetic factors associated with ischemic stroke phenotypes

identified a potential genetic contribution to ischemic stroke

etiology.

Materials and Methods

Ethics Statement
All subjects provided written informed consent to participate in

stroke genetics research. SWISS and ISGS protocols are approved

by the Mayo Clinic Institutional Review Board, Rochester, MN

and the BRAINS protocol is approved by the Ethics Committee of

Imperial College London & Hammersmith Hospital.

ISGS/SWISS Dataset
The Ischemic Stroke Genetic Study (ISGS) is a multicenter

inception cohort study [5]. Cases were recruited from inpatient

stroke services at five United States academic medical centers.

Cases are adult men and women over the age of 18 years

diagnosed with first-ever ischemic stroke confirmed by a study

neurologist on the basis of history, physical examination and CT

or MR imaging of the brain. Cases had to be enrolled within 30

days of onset of stroke symptoms. Cases were excluded if they had:

a mechanical aortic or mitral valve at the time of the index

ischemic stroke, central nervous system vasculitis, or bacterial

endocarditis. They were also excluded if they were known to have:

cerebral autosomal dominant arteriopathy with subcortical infarcts

and leukoencephalopathy (CADASIL), Fabry disease, homocys-

tinuria, mitochondrial encephalopathy with lactic acidosis and

stroke-like episodes (MELAS), or sickle cell anemia. Stroke severity

at enrollment was assessed using the NIH Stroke Scale and

outcomes at 90-days were assessed by telephone using the Barthel

Index, Glasgow Outcome Scale, and the modified Rankin scale.

Diagnostic evaluation included: head CT (95%) or MRI (83%),

electrocardiography (92%), cervical arterial imaging (86%), and

echocardiography (74%). Medical records from all cases were

centrally reviewed by a vascular neurology committee and

assigned ischemic stroke subtype diagnoses according to criteria

from the Trial of ORG10172 (TOAST) [6], the Oxfordshire

Community Stroke Project [7], and the Baltimore-Washington

Young Stroke Study [8]. DNA was donated to the NINDS DNA

Repository (Coriell Institute, Camden, NJ) for eligible samples

with appropriate written informed consent.

The Siblings with Ischemic Stroke Study (SWISS) is a

multicenter affected sibling pair study [9]. Probands with ischemic

stroke were enrolled at 66 US medical centers and 4 Canadian

medical centers. Probands are adult men and women over the age

of 18 years diagnosed with ischemic stroke confirmed by a study

neurologist on the basis of history, physical examination and CT

or MR imaging of the brain. Probands were required to have a

history of at least one living sibling with a history of stroke.

Probands were excluded if they had: a mechanical aortic or mitral

valve at the time of the index ischemic stroke, central nervous

system vasculitis, or bacterial endocarditis. Probands were also

excluded if they were known to have: cerebral autosomal

dominant arteriopathy with subcortical infarcts and leukoenceph-

alopathy (CADASIL), Fabry disease, homocystinuria, mitochon-

drial encephalopathy with lactic acidosis and stroke-like episodes

(MELAS), or sickle cell anemia. Siblings were enrolled using

proband-initiated contact [10] or direct contact when permitted

by Institutional Review Boards.

Concordant siblings had their diagnosis of ischemic stroke

confirmed by review of medical records by a central vascular

neurology committee. Concordant siblings had the same eligibility

criteria as probands. Subtype diagnoses were assigned to the index

strokes of probands and concordant siblings according to TOAST

criteria [6]. Discordant siblings of the proband were confirmed to

be stroke-free using the Questionnaire for Verifying Stroke-free

Status [11]. A repository of lymphoblastoid cell lines was created

and is curated by the Coriell Institute, Camden, NJ.

Readily available US controls were utilized, including stroke-

free participants from the Baltimore Longitudinal Study of Aging

and the National Institute of Neurological Diseases and Stroke

neurologically normal control series taken from the Coriell Cell

Repositories. All controls had been previously genotyped and

described in detail elsewhere [12].

Bio-Repository of DNA in Stroke (BRAINS) dataset
BRAINS is an ongoing, multicenter, in-hospital study which

recruits consenting acute stroke patients into a highly character-

ized biobank [13]. All adult (.18 years of age) stroke patients with

either ischemic or hemorrhagic pathology were recruited. All

patients receive a neurological examination and are required to

have either CT or MRI-confirmed lesions. Ischemic stroke

subtypes are further sub-classified according to TOAST criteria.

All known monogenic causes of stroke are excluded. The BRAINS

design has two principal arms. The first arm recruits United

Kingdom (UK) European ancestry stroke patients, while the

second arm recruits South Asian ancestry stroke patients from

multiple sites in the UK and also from sites in India.

Neurologically normal control data for the European arm is

provided by collaborators at University College London and

Cardiff University [14] [15], while control subjects for the South

Asian arm are recruited simultaneously as the affected stroke

patient and usually is the spouse of the proband. For the purposes

of this study, only subjects from the European arm were included.

Genotyping Quality Control
Both the ISGS/SWISS and the BRAINS genotyping datasets

underwent identical quality control procedures. Each case series

was genotyped using the Illumina 610 or 660 genotyping arrays,

while control series used in the ISGS/SWISS dataset were

genotyped using the Illumina HumanHap 550Kv1 or 550Kv3

genotyping arrays. The BRAINS dataset utilized controls

genotyped on either the Illumina 610 or 660 genotyping arrays.

Genotypes were called using Illumina GenomeStudio software,

with all alleles called on the forward strands based on default

cluster files provided by Illumina. In addition, all A/T and G/C

SNPs were removed prior to merging case and control sample sets,

SNPs with discordant minor alleles on the same strand across chips

were removed prior to merging datasets as well. Preliminary

exclusion criteria per sample included genome-wide SNP call rates

,95% and discordance between self-reported gender and sex

determined from X chromosome heterozygosity. After merging

with control datasets, SNPs were excluded if genotyping success

rate ,95%, minor allele frequency (MAF) ,0.01, Hardy-
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Weinberg equilibrium (HWE) P,161024 in controls and

P,161027 in cases, nonrandom missingness per haplotype

P,161025 and missingness in cases compared to controls (from

chi-squared test) P,161025.

Stroke cases and controls were merged with a subset of samples

from HapMap 3 (ASW, CEU, CHB, JPT, TSI and YRI

populations) and underwent multidimensional scaling analyses to

verify European ancestry for the case-control series. Individuals

having estimated principal component vector 1 (PC1) and 2 (PC2)

values greater than 3 standard deviations from the combined

CEU/TSI means for each vector were excluded as outliers.

Evidence of cryptic relatedness was examined using pairwise

identical by descent (IBD) estimates. Samples were excluded if they

shared greater than a 0.125 proportion of alleles (pi_hat .0.125).

After samples were excluded, SNP-based quality control was

repeated prior to imputation, with all SNPs passing quality control

entering the imputation phase. Basic quality control of genotyped

SNP data was carried out using PLINKv1.07 [16]. After quality

control was complete, the ISGS/SWISS dataset included 1070

cases and 1488 controls genotyped at 419,170 SNPs and the

BRAINS dataset included 400 cases and 444 controls genotyped at

496,742 SNPs. The comparatively lower number of SNPs passing

quality control in the ISGS/SWISS dataset is primarily due to

issues with merging SNPs across Ilumina arrays, which effectively

limited the arrays to the consensus SNPs.

Imputation
The SNPs passing quality control for the ISGS/SWISS and

BRAINS datasets were imputed separately using a two-stage

procedure implemented in Markov Chain based haplotyper

(MACH; version 1.0.16) [17]. The first stage of imputation

generated error and crossover map parameter estimates for the

imputation model using a random subset of 200 samples per

dataset with over 100 iterations of the initial statistical model.

These parameter estimates were used to generate maximum

likelihood estimates of allele dosages per SNP from reference

haplotypes during the second stage of the imputation. For this

study, the August 2010 release of the 1000 Genomes European

ancestry haplotypes was utilized as a reference for SNP imputation

[18].

GWAS Statistical Methods
All dataset-specific GWAS summary statistics were generated

using logistic regression as implemented in MACH2DAT for

binomial phenotypes (e.g., ischemic stroke) or linear regression for

continuous phenotypes (e.g., age at onset of ischemic stroke) as

implemented in MACH2QTL [17]. Age at onset was relatively

normally distributed in both datasets and did not undergo

transformation. Both series of regression models implemented

covariates of PC1 and PC2 from multidimensional scaling analyses

to adjust for approximate population substructure within each

dataset. For each phenotype, a fixed-effects-inverse variance

weighted meta-analyses was used (METAL) to combine test

statistics across datasets to generate combined P-values for each

SNP [19]. Prior to combining P-values, SNPs missing in either

study due to post-imputation filtering based on RSQR quality

indexes ,0.3 or minor allele frequencies ,0.01 in either study

were removed. Standard errors of the ß coefficients were scaled by

the square root of study-specific genomic inflation factor estimates

before combining the summary statistics across datasets if the

genomic inflation factor was .1. A total of 5,156,597 SNPs

(genotyped and imputed) were incorporated into the meta-

analysis.

Risk Profiling
The SNPs chosen for the models were based on meta-analysis of

both ISGS/SWISS and BRAINS data. All SNPs with fixed-effects

P,161025 and appearing in both datasets for each phenotype

were incorporated into risk profile modeling. Summary statistics,

including effect heterogeneity estimates, for each of these SNPs

can be found in Table S1a–S1e. Effect estimates (beta coefficients

(ßj) from logistic regression for binomial phenotypes and from

linear regression for the continuous age at onset phenotype) from

the ISGS/SWISS dataset for these SNPs were used to weight allele

counts and estimate risk profiles in the BRAINS dataset. The risk

profile (RP), was calculated as follows - for the ‘p’ SNPs,

RP =Sjßjj*N (j = 1..,p), where ßjj is the parameter estimate for

the jth SNP with fixed-effects P,161025 in the ISGS/SWISS

dataset, and N is the number of risk alleles at the jth SNP (N = 0, 1,

2). The effect estimates from ISGS/SWISS data for the chosen

SNPs were then applied to BRAINS data. Risk profile associations

for each quintile was quantified using the lowest quintile of risk per

population as a reference group in logistic regression models,

adjusted for estimates of population substructure (PC1 and PC2

from multi-dimensional scaling) in the BRAINS dataset for all

binomial (ischemic stroke) phenotypes. Risk profile associations in

the BRAINS dataset for the age at onset phenotype were

estimated using linear regression and adjusted for population

substructure. Overall risk trends (unstratified models) were

evaluated for each population using identical covariates in

multivariate regression models.

In the risk profile analysis, age-at-onset was treated as a

continuous measure. For this analysis, the quintile groups were

based on the distribution of alleles per sample, which is indicative

of earlier onset stroke. Therefore the first quintile would be

participants possessing the lowest number of alleles associated with

early onset of first stroke as the reference population for all

analyses, with the fifth quintile (as per Table 1) being participants

possessing the highest number of alleles associated with earlier

onset of first stroke.

Post-Hoc Power Calculations
Due to the comparatively small size of this meta-analysis, post-

hoc power calculations were carried out. Based on the realistic

target of alleles with beta coefficients of roughly 0.3 (odds ratio

,1.35) in our total series of samples, this study was at 70% power

for effect alleles at a frequency of 0.45, 66% power for effect alleles

at a frequency of 0.30, and 28% power for effect alleles at a

frequency of 0.15, using a P,561028 cut-off for significance. The

small effect size often associated with common variants is likely the

reason for this study failing to identify any genome-wide significant

SNP associations. Using a similar modeling scenario for the risk

profile analysis, based on the entire BRAINS dataset, we were

optimistically powered to detect cumulative risk effects at P,0.01

significance level based on effect sizes at an odds ratio of 1.64 as

per the lowest estimate for overall stroke in Table 2. This study

surpasses 80% power to detect effects of this size in the risk

profiling analysis. Although, this increased power may be an

overestimation, as the BRAINS study was used to identify these

candidate SNPs in the discovery phase. The low number of tests in

the profile scoring analyses helped to alleviate the detrimental

effects of multiple testing phenomena on the power of these

analyses.

Results

No single SNP (either genotyped or imputed) exhibited genome-

wide significant association with ischemic stroke or for any
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phenotypes analyzed in this study (P,561028) (Table 2).

Nonetheless, a number of possible candidate regions were

identified that approached genome-wide significance. These

regions include loci that were incorporated into the risk profile

analyses, as they had P,161025 in fixed-effects meta-analysis

(Figure 1). The implicated chromosome 9p21 locus associated with

myocardial infarction, the 4q25 locus near the PITX2 and variants

in the ZFHX3 were included in our meta-analysis and summary

statistics for these implicated loci may be found in the Table S2,

although the small effect sizes in original reports from studies with

larger sample sizes caused detection of these effects on a genome-

wide scale to be impossible.

The risk profile analyses demonstrate significant trends of

cumulative genetic effects associated with risk of ischemic stroke

and presumed etiology (TOAST subtypes). The association

between risk profile SNPs and ischemic stroke age at onset is

significant (P = 1.9561025) after Bonferroni correction for 5 tests

and the risk profile accounts for ,4% of the variation in the

phenotype. This association persists after adjustment for stroke

subtypes (1.7161025). The surprisingly strong trends for associ-

ations with ischemic stroke and presumed etiology suggest genetic

effects that should be detected by larger meta-analyses. There are

markedly significant risk increases across more common stroke

subtypes (OR [95% confidence interval] as shown in Table 1:

ischemic stroke 22.75 [1.76, 4.36], large artery 25.32

[2.68,11.26] and small vessel 25.50 [2.70, 11.95]). There is also

a large effect contrasting the first and fifth quintiles of age at onset

(ß = 214.77 [210.85, 218.68], P = 5.54610212), suggesting a

strong skewing of effect towards genetic variants with a high

propensity for late onset stroke. When adding additional covariates

of stroke subtype into the age at onset model, the overall trend is

still highly. The risk profile scorings provide additional suggestive

evidence of genetic components in the etiology of stroke.

Nevertheless, all area under the curve (AUC) estimates were

below 0.7, suggesting little incremental clinical utility of SNP

genotype information at this stage, assuming AUC .0.8 is often

the criterion for clinical utility.

Discussion

This genome-wide association study follows a previous pub-

lished, but low-powered, genome-wide association study that

involved 278 patients and 275 controls [20]. The current study has

a substantial increase in statistical power, accumulating a sample

set of 1464 cases and 1932 controls. Notwithstanding this increase

in statistical power, no single SNP reached genome-wide levels of

Table 1. Risk profile estimates for phenotypes of interest.

1st Risk
Quintile, RG

2nd Risk
Quintile

3rd Risk
Quintile

4th Risk
Quintile

5th Risk
Quintile

Binomial Phenotypes* Trend P-Value AUC OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Ischemic Stroke 4.61E-06 0.605 1 1.64 (1.05, 2.58) 1.81 (1.15, 2.86) 2.25 (1.43, 3.55) 2.75 (1.76, 4.36)

Large Artery 3.98E-10 0.696 1 1.23 (0.53, 2.90) 1.92 (0.90, 4.26) 4.01 (1.95, 8.73) 5.32(2.68, 11.26)

Small Vessel 1.80E-08 0.691 1 0.81 (0.35,1.86) 1.84 (0.86, 4.02) 1.80 (0.89, 3.76) 5.50 (2.70, 11.95)

Quantitative Phenotype Trend P-Value Multiple r2 Beta (95% CI) Beta (95% CI) Beta (95% CI) Beta (95% CI) Beta (95% CI)

Age at Onset in years# 1.95E-05 0.0403 0 29.06 (212.84,
25.28)

210.61 (214.39,
26.83)

211.10 (215.12,
27.08)

214.78 (218.84,
210.73)

Abbreviations: RG; Reference Group, AUC; area under the curve, OR; Odds Ratio, CI; Confidence Interval.
*Denotes models could not be fit accurately due to only 40 cardioembolic cases, although the overall risk profile trend was significant (Beta = 6.58, Standard error = 1.99,
p-value = 0.000936).

#Denotes analysis with reference group as the quintile possessing the fewest alleles associated with earlier onset stroke, as an example, the 5th quintile is the group
comprised of participants with the highest cumulative allele dosages associated with earlier onset stroke, mean ages at onset per quintile as follows from 1st to 5th

quintiles: 77.51, 69.09, 67.23,66.82, and 63.08 years.
Estimated risk per allele was scaled based on effect estimates from the ISGS/SWISS dataset and fitted to the BRAINS dataset, with nominated SNPs including all SNPs
meeting a p-value threshold of 1025 in the meta-analysis specific to each phenotype.
doi:10.1371/journal.pone.0023161.t001

Table 2. Descriptive information for GWAS datasets.

Meta-Analysis ISGS/SWISS1 BRAINS2

Phenotype Lambda* Cases Controls Lambda* Cases Controls Lambda* Cases Controls

AAO 0.993 1462 N/A 1.011 1070 N/A 1.011 392 N/A

CE 0.997 287 1932 1.002 247 1488 1.035 40 444

IS 0.999 1464 1932 1.011 1070 1488 1.064 394 444

LAA 0.989 347 1932 1.010 229 1488 1.047 118 444

SVD 0.995 314 1932 1.014 201 1488 1.030 113 444

1Age at onset mean = 66.619 years (standard deviation = 13.671), 43% male cohort.
2Age at onset mean = 68.543 years (standard deviation = 14.001), 53% male cohort.
*Genomic Inflation Factor.
Cohort age at onsets are significantly different (|t| = 2.334, p-value = 0.019)This includes estimates of genomic inflation factor (lambda) and case-control counts for
phenotypes of interest.
doi:10.1371/journal.pone.0023161.t002
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significance for association with ischemic stroke or associated

secondary phenotypes. This failure to identify a locus for ischemic

stroke with this sample size is consistent with the results of the

similarly sized CHARGE consortium, whose initial finding of a

locus on chromosome 12 has yet to independently replicate [21]

[12]. Meta-analytical techniques applied to substantially larger

data sets will be necessary to reliably identify risk loci for ischemic

stroke with common variants from GWAS and imputation.

We identified a significant difference that survived correction for

multiple testing between the highest quintile and lowest quintile of

allele dosages contributing to age at onset of stroke (compared with

the lowest quintile), this revealed a 14.78 (95% CI 218.84,

210.73) year difference in age at onset between these two groups

(P = 2.45610211). In the SWISS data, a significant correlation has

previously been reported between age at onset for probands with

ischemic stroke and age at onset in their ischemic stroke-affected

siblings [22]. About 50% of variability in age at onset in a proband

could be accounted for by age in an affected sibling. This

correlation was likely the result of genetic factors, shared

environmental factors and, possibly, to ascertainment bias.

Resequencing studies with longitudinal follow-up and detailed

environmental exposure data will help researchers delve further

into etiological effects influencing age at first stroke, as rare

variants and environmental factors may have greater influence on

this phenotype than the common variants reported here. Age at

stroke is a precise clinical phenotype because stroke by definition is

a paroxysmal disorder. In this sense, disease onset is a more

precisely defined phenotype in patients with ischemic stroke than it

is for patients with chronic neurodegenerative diseases such as

Parkinson’s or Alzheimer’s disease, that are characterized by

progression from preclinical to clinical levels over months or years.

The parameter of age at onset of ischemic stroke does have some

limitations as a biological phenotype as a number of ischemic

strokes are ‘‘silent’’, without symptoms or gross clinical signs [23].

Further, some ischemic strokes generate symptoms, but fail to rise

to clinical attention [24].

The observed significant relationships in genomic risk profile

between the highest risk quintile and major ischemic stroke

subtypes (large vessel and small vessel etiology) is consistent with

the known association between family history of stroke and large

vessel and small vessel ischemic stroke [25]. However, even though

the risk profiling was highly significant for phenotypes like large

vessel stroke, risk profiling provided little incremental gain in

prediction of ischemic stroke. For large vessel ischemic stroke,

profiling explained only 4% of the variance in risk. Our work

suggests that genomic profiling using the current SNP technology

is unlikely to be a clinically useful way of staging stroke risk as there

is no substantial gain over simply including family history of stroke

status [26]. However, it may be possible to make incremental

improvements in clinical risk profiling by incorporating genomic

(rare variant) as well as other ‘‘omic’’ information in the future.

Supporting Information

Table S1 Single nucleotide polymorphisms with the strongest

associations for srtoke.

(DOC)

Table S2 This table shows the association between previously

identified stroke loci and related stroke phenotypes in this study

(ischemic stroke overall and cardioembolic stroke).

(DOC)
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