83 research outputs found

    The interplay between hunting rate, hunting selectivity, and reproductive strategies shapes population dynamics of a large carnivore

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in van de Walle, J., Pelletier, F., Zedrosser, A., Swenson, J. E., Jenouvrier, S., & Bischof, R. The interplay between hunting rate, hunting selectivity, and reproductive strategies shapes population dynamics of a large carnivore. Evolutionary Applications, (2021): 1-19, https://doi.org/10.1111/eva.13253.Harvest, through its intensity and regulation, often results in selection on female reproductive traits. Changes in female traits can have demographic consequences, as they are fundamental in shaping population dynamics. It is thus imperative to understand and quantify the demographic consequences of changes in female reproductive traits to better understand and anticipate population trajectories under different harvest intensities and regulations. Here, using a dynamic, frequency-dependent, population model of the intensively hunted brown bear (Ursus arctos) population in Sweden, we quantify and compare population responses to changes in four reproductive traits susceptible to harvest-induced selection: litter size, weaning age, age at first reproduction, and annual probability to reproduce. We did so for different hunting quotas and under four possible hunting regulations: (i) no individuals are protected, (ii) mothers but not dependent offspring are protected, (iii) mothers and dependent offspring of the year (cubs) are protected, and (iv) entire family groups are protected (i.e., mothers and dependent offspring of any age). We found that population growth rate declines sharply with increasing hunting quotas. Increases in litter size and the probability to reproduce have the greatest potential to affect population growth rate. Population growth rate increases the most when mothers are protected. Adding protection on offspring (of any age), however, reduces the availability of bears for hunting, which feeds back to increase hunting pressure on the nonprotected categories of individuals, leading to reduced population growth. Finally, we found that changes in reproductive traits can dampen population declines at very high hunting quotas, but only when protecting mothers. Our results illustrate that changes in female reproductive traits may have context-dependent consequences for demography. Thus, to predict population consequences of harvest-induced selection in wild populations, it is critical to integrate both hunting intensity and regulation, especially if hunting selectivity targets female reproductive strategies.JVdW and FP were funded by the Natural Sciences and Engineering Research Council of Canada. JVdW was also funded by the Fonds de Recherche du QuĂ©bec—Nature et Technologies. This is scientific paper number 305 from the Scandinavian Brown Bear Research Project, which is funded by the Swedish Environmental Protection Agency, the Norwegian Directorate for Nature Management, and the Austrian Science Fund. This research was funded through the 2015-2016 BiodivERsA COFUND, with the national funders ANR (ANR-16-EBI3-0003), NCN (2016/22/Z/NZ8/00121), DLR-PT (01LC1614A), UEFISCDI (BiodivERsA3-2015-147-BearConnect (96/2016), and RCN (269863 and 286886). SJ acknowledges support of NSF OPP #1840058

    Specific shifts in the endocannabinoid system in hibernating brown bears

    Get PDF
    In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly drive physiological adaptation to the hibernating state. In hibernating brown bears (Ursus arctos), we hypothesized that beyond an overall suppression of the ECS, seasonal shift in endocannabinoids compounds could be linked to bear's peculiar features that include hibernation without arousal episodes and capacity to react to external disturbance. We explored circulating lipids in serum and the ECS in plasma and metabolically active tissues in free-ranging subadult Scandinavian brown bears when both active and hibernating. In winter bear serum, in addition to a 2-fold increase in total fatty acid concentration, we found significant changes in relative proportions of circulating fatty acids, such as a 2-fold increase in docosahexaenoic acid C22:6 n-3 and a decrease in arachidonic acid C20:4 n-6. In adipose and muscle tissues of hibernating bears, we found significant lower concentrations of 2-arachidonoylglycerol (2-AG), a major ligand of cannabinoid receptors 1 (CB1) and 2 (CB2). Lower mRNA level for genes encoding CB1 and CB2 were also found in winter muscle and adipose tissue, respectively. The observed reduction in ECS tone may promote fatty acid mobilization from body fat stores, and favor carbohydrate metabolism in skeletal muscle of hibernating bears. Additionally, high circulating level of the endocannabinoid-like compound N-oleoylethanolamide (OEA) in winter could favor lipolysis and fatty acid oxidation in peripheral tissues. We also speculated on a role of OEA in the conservation of an anorexigenic signal and in the maintenance of torpor during hibernation, while sustaining the capacity of bears to sense stimuli from the environment

    ï»żThe potential of metabarcoding plant components of Malaise trap samples to enhance knowledge of plant-insect interactions

    Get PDF
    The worldwide rapid declines in insect and plant abundance and diversity that have occurred in the past decades have gained public attention and demand for political actions to counteract these declines are growing. Rapid large-scale biomonitoring can aid in observing these changes and provide information for decisions for land management and species protection. Malaise traps have long been used for insect sampling and when insects are captured in these traps, they carry traces of plants they have visited on the body surface or as digested food material in the gut contents. Metabarcoding offers a promising method for identifying these plant traces, providing insight into the plants with which insects are directly interacting at a given time. To test the efficacy of DNA metabarcoding with these sample types, 79 samples from 21 sites across Germany were analysed with the ITS2 barcode. This study, to our knowledge, is the first examination of metabarcoding plant DNA traces from Malaise trap samples. Here, we report on the feasibility of sequencing these sample types, analysis of the resulting taxa, the usage of cultivated plants by insects near nature conservancy areas and the detection of rare and neophyte species. Due to the frequency of contamination and false positive reads, isolation and PCR negative controls should be used in every reaction. Metabarcoding has advantages in efficiency and resolution over microscopic identification of pollen and is the only possible identification method for the other plant traces from Malaise traps and could provide a broad utility for future studies of plant-insect interactions

    Improving insect conservation management through insect monitoring and stakeholder involvement

    Get PDF
    In recent years, the decline of insect biodiversity and the imminent loss of provided ecosystem functions and services has received public attention and raised the demand for political action. The complex, multi-causal contributors to insect decline require a broad interdisciplinary and cross-sectoral approach that addresses ecological and social aspects to find sustainable solutions. The project Diversity of Insects in Nature protected Areas (DINA) assesses insect communities in 21 nature reserves in Germany, and considers interactions with plant diversity, pesticide exposure, spatial and climatic factors. The nature reserves border on agricultural land, to investigate impacts on insect diversity. Part of the project is to obtain scientific data from Malaise traps and their surroundings, while another part involves relevant stakeholders to identify opportunities and obstacles to insect diversity conservation. Our results indicate a positive association between insect richness and biomass. Insect richness was negatively related to the number of stationary pesticides (soil and vegetation), pesticides measured in ethanol, the amount of area in agricultural production, and precipitation. Our qualitative survey along with stakeholder interviews show that there is general support for insect conservation, while at the same time the stakeholders expressed the need for more information and data on insect biodiversity, as well as flexible policy options. We conclude that conservation management for insects in protected areas should consider a wider landscape. Local targets of conservation management will have to integrate different stakeholder perspectives. Scientifically informed stakeholder dialogues can mediate conflicts of interests, knowledge, and values to develop mutual conservation scenarios

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore