605 research outputs found

    Bi-objective optimization of organ properties for the simulation of intracavitary brachytherapy applicator placement in cervical cancer

    Full text link
    Validation of deformable image registration techniques is extremely important, but hard, especially when complex deformations or content mismatch are involved. These complex deformations and content mismatch, for example, occur after the placement of an applicator for brachytherapy for cervical cancer. Virtual phantoms could enable the creation of validation data sets with ground truth deformations that simulate the large deformations that occur between image acquisitions. However, the quality of the multi-organ Finite Element Method (FEM)-based simulations is dependent on the patient-specific external forces and mechanical properties assigned to the organs. A common approach to calibrate these simulation parameters is through optimization, finding the parameter settings that optimize the match between the outcome of the simulation and reality. When considering inherently simplified organ models, we hypothesize that the optimal deformations of one organ cannot be achieved with a single parameter setting without compromising the optimality of the deformation of the surrounding organs. This means that there will be a trade-off between the optimal deformations of adjacent organs, such as the vagina-uterus and bladder. This work therefore proposes and evaluates a multi-objective optimization approach where the trade-off between organ deformations can be assessed after optimization. We showcase what the extent of the trade-off looks like when bi-objectively optimizing the patient-specific mechanical properties and external forces of the vagina-uterus and bladder for FEM-based simulations

    Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function

    Latent Tuberculosis Infection in a Migrant Agricultural Community in Baja California, Mexico

    Get PDF
    The objectives were to estimate the prevalence and identify correlates of latent tuberculosis infection (LTBI) among residents of a migrant agricultural community in San Quintín, Baja-California, Mexico. Residents completed a questionnaire and had their blood tested for LTBI using the QuantiFERON®-TB Gold In-Tube (QFT) assay. Among 133 participants, 39.8% (95% CI 31.5–48.7%) tested QFT-positive. Having crossed the U.S.-Mexican border since living in San Quintin (P = 0.03), consuming unpasteurized milk (P = 0.02) and receiving health care at IMSS-Oportunidades in the last 6 months (P = 0.03) were independently associated with QFT-positivity. High LTBI prevalence in this community emphasizes the need for TB education and LTBI treatment for its residents. Association with travel to the U.S. suggests the potential for TB transmission across borders. Higher QFT-positivity among those consuming unpasteurized milk could indicate M. bovis infection, previously reported among Mexican migrants living in U.S. border cities

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma

    Functional Impairment of Central Memory CD4 T Cells Is a Potential Early Prognostic Marker for Changing Viral Load in SHIV-Infected Rhesus Macaques

    Get PDF
    In HIV infection there is a paucity of literature about the degree of immune dysfunction to potentially correlate and/or predict disease progression relative to CD4+ T cells count or viral load. We assessed functional characteristics of memory T cells subsets as potential prognostic markers for changing viral loads and/or disease progression using the SHIV-infected rhesus macaque model. Relative to long-term non-progressors with low/undetectable viral loads, those with chronic plasma viremia, but clinically healthy, exhibited significantly lower numbers and functional impairment of CD4+ T cells, but not CD8+ T cells, in terms of IL-2 production by central memory subset in response to PMA and ionomycine (PMA+I) stimulation. Highly viremic animals showed impaired cytokine-production by all T cells subsets. These results suggest that functional impairment of CD4+ T cells in general, and of central memory subset in particular, may be a potential indicator/predictor of chronic infection with immune dysfunction, which could be assayed relatively easily using non-specific PMA+I stimulation

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Mutualism and Adaptive Divergence: Co-Invasion of a Heterogeneous Grassland by an Exotic Legume-Rhizobium Symbiosis

    Get PDF
    Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion
    corecore