34 research outputs found

    Desorption Kinetics of O and CO from Graphitic Carbon Surfaces

    Get PDF
    The desorption of O/CO from graphitic carbon surfaces is investigated using a one-dimensional model describing the adsorbate interactions with the surface phonon bath. The kinetics of desorption are described through the solution of a master equation for the time-dependent population of the adsorbate in an oscillator state, which is modified through thermal fluctuations at the surface. The interaction of the adsorbate with the surface phonons is explicitly captured by using the computed phonon density Of states (PDOS) of the surface. The coupling of the adsorbate with the phonon bath results in the transition of the adsorbate up and down a vibrational ladder. The adsorbate-surface interaction is represented in the model using a Morse potential, which allows for the desorption process to be directly modeled as a transition from bound to free (continuum) state. The PDOS is a property of the material and the lattice; and is highly sensitive to the presence of defects. The effect of etch pits along with random surface defects on the PDOS is considered in the present work. The presence of defects causes a redshift and broadening of the PDOS, which in turn changes the phonon frequency modes available for adsorbate coupling at the surface. Using the realistic PDOS distributions, the phonon-induced desorption (PID) model was used to compute the transition and desorption rates for both pristine and defective systems. Mathissens rule is used to compute the phonon relaxation time for pristine and defective systems based on the phonon scattering times for each of the different scattering processes. First, the desorption rates of the pristine system is fitted against the experimental values to obtain the Morse potential parameters for each of the observed adatoms. These Morse potential parameters are used along with the defective PDOS and phonon relaxation time to compute the desorption rates for the defective system. The defective system rates (both transition and desorption) were consistently lower in comparison with the pristine system. The difference between the transition rates is more significant at lower initial states due to higher energy spacing between the levels. In the case of the desorption rates, the difference between the defective and pristine system is more significant at higher temperatures. The desorption rates for each of the system shows an order of magnitude decrease with the strongly bound systems exhibiting the greatest reduction in the desorption rates

    Zirconium Carbide Oxidation and Passivation for Nuclear Fuel Applications

    Get PDF
    Please click Additional Files below to see the full abstract. Please click Download on the upper right corner to see the presentation

    Investigation of the High-Energy Oxidation of FiberForm from DSMC Analysis of Molecular Beam Experiments

    Get PDF
    A collaborative effort between the University of Illinois at Urbana-Champaign (UIUC), NASA Ames Research Center (ARC) and Montana State University (MSU) succeeded at developing a new finite-rate carbon oxidation model from molecular beam scattering experiments on vitreous carbon (VC). We now aim to use the direct simulation Monte Carlo (DSMC) code SPARTA to apply the model to each fiber of the porous fibrous Thermal Protection Systems (TPS) material FiberForm (FF). The detailed micro-structure of FF was obtained from X-ray micro-tomography and then used in DSMC. Both experiments and simulations show that the CO/O products ratio increased at all temperatures from VC to FF. We postulate this is due to the larger number of collisions an O atom encounters inside the porous FF material compared to the flat surface of VC. For the simulations, we particularly focused on the lowest and highest temperatures studied experimentally, 1023 K and 1823 K, and found good agreement between the finite-rate DSMC simulations and experiments

    Urinary trace metals, maternal circulating angiogenic biomarkers, and preeclampsia: a single-contaminant and mixture-based approach

    Full text link
    Abstract Background Exposures to toxic metals and deficiencies in essential metals disrupt placentation and may contribute to preeclampsia. However, effects of exposure to combinations of metals remain unknown. Objective We investigated the relationship between urinary trace metals, circulating angiogenic biomarkers, and preeclampsia using the LIFECODES birth cohort. Methods Urine samples collected during pregnancy were analyzed for 17 trace metals and plasma samples were analyzed for soluble fms-like tyrosine-1 (sFlt-1) and placental growth factor (PlGF). Cox proportional hazard models were used to estimate the hazard ratios (HR) of preeclampsia associated with urinary trace metals. Linear regression models were used to estimate the relationship between urinary trace metals and angiogenic biomarkers. Principal components analysis (PCA) was used to identify groups of metals and interactions between principal components (PCs) loaded by toxic and essential metals were examined. Results In single-contaminant models, several toxic and essential metals were associated with lower PlGF and higher sFlt-1/PlGF ratio. Detection of urinary chromium was associated with preeclampsia: HR (95% Confidence Interval [CI]) = 3.48 (1.02, 11.8) and an IQR-increase in urinary selenium was associated with reduced risk of preeclampsia (HR: 0.28, 95% CI: 0.08, 0.94). Using PCA, 3 PCs were identified, characterized by essential metals (PC1), toxic metals (PC2), and seafood-associated metals (PC3). PC1 and PC2 were associated with lower PlGF levels, but not preeclampsia risk in the overall cohort. Conclusions Trace urinary metals may be associated with adverse profiles of angiogenic biomarkers and preeclampsia.https://deepblue.lib.umich.edu/bitstream/2027.42/152235/1/12940_2019_Article_503.pd

    Fenfluramine for Treatment-Resistant Seizures in Patients With Dravet Syndrome Receiving Stiripentol-Inclusive Regimens A Randomized Clinical Trial

    Get PDF
    IMPORTANCE Fenfluramine treatment may reduce monthly convulsive seizure frequency in patients with Dravet syndrome who have poor seizure control with their current stiripentol-containing antiepileptic drug regimens. OBJECTIVE To determine whether fenfluramine reduced monthly convulsive seizure frequency relative to placebo in patients with Dravet syndrome who were taking stiripentol-inclusive regimens. DESIGN, SETTING, AND PARTICIPANTS This double-blind, placebo-controlled, parallel-group randomized clinical trial was conducted in multiple centers. Eligible patients were children aged 2 to 18 years with a confirmed clinical diagnosis of Dravet syndrome who were receiving stable, stiripentol-inclusive antiepileptic drug regimens. INTERVENTIONS Patients with 6 or more convulsive seizures during the 6-week baseline period were randomly assigned to receive fenfluramine, 0.4 mg/kg/d (maximum, 17 mg/d), or a placebo. After titration (3 weeks), patients’ assigned dosages were maintained for 12 additional weeks. Caregivers recorded seizures via a daily electronic diary. MAIN OUTCOMES AND MEASURES The primary efficacy end point was the change in mean monthly convulsive seizure frequency between fenfluramine and placebo during the combined titration and maintenance periods relative to baseline. RESULTS A total of 115 eligible patients were identified; of these, 87 patients (mean [SD], age 9.1 [4.8] years; 50 male patients [57%]; mean baseline frequency of seizures, approximately 25 convulsive seizures per month) were enrolled and randomized to fenfluramine, 0.4 mg/kg/d (n = 43) or placebo (n = 44). Patients treated with fenfluramine achieved a 54.0% (95% CI, 35.6%-67.2%; P < .001) greater reduction in mean monthly convulsive seizure frequency than those receiving the placebo. With fenfluramine, 54% of patients demonstrated a clinically meaningful (50%) reduction in monthly convulsive seizure frequency vs 5% with placebo (P < .001). The median (range) longest seizure-free interval was 22 (3.0-105.0) days with fenfluramine and 13 (1.0-40.0) days with placebo (P = .004). The most common adverse events were decreased appetite (19 patients taking fenfluramine [44%] vs 5 taking placebo [11%]), fatigue (11 [26%] vs 2 [5%]), diarrhea (10 [23%] vs 3 [7%]), and pyrexia (11 [26%] vs 4 [9%]). Cardiac monitoring demonstrated no clinical or echocardiographic evidence of valvular heart disease or pulmonary arterial hypertension. CONCLUSIONS AND RELEVANCE Fenfluramine demonstrated significant improvements in monthly convulsive seizure frequency in patients with Dravet syndrome whose conditions were insufficiently controlled with stiripentol-inclusive antiepileptic drug regimens. Fenfluramine was generally well tolerated. Fenfluramine may represent a new treatment option for Dravet syndrome. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT0292689

    Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity

    Get PDF
    The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations
    corecore