Engineering Conferences International

ECI Digital Archives

Ultra-High Temperature Ceramics: Materials For Extreme Environment Applications V

Proceedings

6-7-2022

Zirconium Carbide Oxidation and Passivation for Nuclear Fuel Applications

Allison Rzepka

Matthew Konnik

Francesco Panerai

Collin Foster

Kelly A. Stephani

See next page for additional authors

Follow this and additional works at: https://dc.engconfintl.org/uhtc_v

Authors

Allison Rzepka, Matthew Konnik, Francesco Panerai, Collin Foster, Kelly A. Stephani, and Daniel H. Hecht

Zirconium Carbide Oxidation and Passivation for Nuclear Fuel Applications

Allison E. Rzepka^{a,c}, Matthew Konnik^{a,c}, Kelly A. Stephani^{a,c},

Francesco Panerai^{b,c}, Vincent Le Maout^{a,c}, Collin Foster^{b,c}, Daniel H. Hecht^d

^a Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
^b Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
^c Center for Hypersonics and Entry System Studies, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
^d Lockheed Martin Aeronautics, Fort-Worth, TX 76108, USA.

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications V June 5th-8th, 2022

Copyright © University of Illinois at Urbana-Champaign and Lockheed Martin Corporation. All rights reserved. DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

- Next Gen nuclear reactor technology
 - Goal: increased economic, safety, and power outputs
 - Challenges:
 - Maintain integrity of fuel element structure
 - Prevent contamination from fission products
 - Radiation Resistance
- ZrC in Nuclear Cladding
 - Provides:
 - Oxidation resistance
 - Superior material properties
 - Chemical resistance, thermo-mechanical integrity
 - Toleration of radiation damage

- ZrC is a promising coating for advanced reactor fuels
 - Excellent resistance to corrosion
 - Fabrication results in range of stable ZrC stoichiometries
 - Sub-stoichiometric to carbon rich
- ZrC oxidation passivates under appropriate temperature and pressure conditions
 - Protective oxide layer formation
- The phenomena underlying this oxide passivation has not been studied above 1000K
 - Yet next generation nuclear reactors operate at temperatures >1873K

- <1000K Fickian diffusion dominates reaction before 2nd mechanism assumes control
- Katoh et al.
 - Densification of monoclinic zirconia, CO₂ partial pressure controls reaction rate
- Shimada et al.
 - Crystallization of cubic zirconia at 743K shifts mechanism to grain boundary diffusion
- Rama Rao et al.
 - Formation of an intermediate oxycarbide layer alters reaction rate

- Martensitic Phase Change
 - Tetragonal ZrO_2 to monoclinic ZrO_2 transition at 1443K
- Intermediate oxycarbide layer
 - Transient
- Contributions to Non-Fickian Diffusion
 - Cracking
 - Grain sizes
 - Material crystal structure
 - Low formation energy of carbon defects

- Oxidation of ZrC
 - Finite Rate Chemistry Model
 - Developing a high temperature ZrC oxidation model with experiments at UIUC
- SPARTA Simulation Tool
 - Direct Simulation Monte Carlo Tool
 - Developed by Sandia National Laboratories
 - Model: gas-gas reactions, gas-surface interactions, gas-surface reactions
 - Leverages finite rate chemistry

ZrC Oxidation

Layer 3

Fig 1. Step 1: Incident $O_{(a)}^{-}$ adsorbs on ZrC surface

Step 2: ZrC_xO_y forms Reaction: $ZrC + 20^{-}_{(g)} \leftrightarrow ZrC_xO_y + yC$

Step 3: Adsorbed O2 reacts with ZrC_xO_y to form $ZrO_2 + CO_{2(s)}$ Reaction: $ZrC_xO_y + O_{2(g)} \leftrightarrow ZrO_2 + CO_{2(s)}$ - At this point, there are competing reactions with O₂ to form ZrO_2 or CO_2

Step 4: CO₂ diffusion creates micro-voids in matrix

Step 5: 1-4 repeat with O₂ diffusion to create further oxide layer depth.

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

- Material
 - ZrC Sputtering targets
 - 99.9% purity
 - ZrC0.63
- Structure
 - Face centered cubic with Carbon defects
- Furnace Setup
 - Isothermal heating, flow tube furnace
 - 20% Oxygen, 80% Nitrogen
- Conditions
 - Elevated Temperature Range
 - 10-40 minute runs

CHESS

CENTER FOR HYPERSONICS

& ENTRY SYSTEMS STUDIES

Kinetic Rates

- Arrhenius fitting of rates derived from furnace experiments (10 min) yields two fits:
 - Mixed Regime: $k = 0.1265^{exp}((-69.5 \text{ kJ/mol})/\text{RT})$
 - High Temperature Regime: $k = 105.41 \exp((-168.8 \text{ kJ/mol})/\text{RT})$
 - Observe change in rates with time, indicating densification of the oxide layer
 - Differences in porosity and quality of the oxide layer

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

ZrC Rates

- 3 Different Oxide layer formation regimes
 - High Temp Regime: dense protective oxide layer forms
 - Mixed Regime: porous protective oxide layer forms
 - Low Temp Regime: powderization of sample
 - Rate in this regime was captured by Rama Rao et al.
- Rates implemented in SPARTA for appropriate temperature regimes
 - Currently assumes all active sites are available to react
- As oxide layer forms, impedes further oxidation of ZrC
- Capture overall ZrC oxidation response
 - Time and temperature

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

- Refine and Develop Sparta Simulations
 - Develop and refine outputs
 - Verify ability to recreate furnace experiments and predictive model capability
 - Implement thermal transport phenomena and cracking into model

References

- [1] Swaminathan-Gopalan, K., Borner, A., Stephani, K.A., Murray, V.J., Poovathingal, S., Minton, T.K and Mansour, N.N., "DSMC Analysis of Molecular Beam Experiments for Oxidation of Carbon Based Ablators," *AIAA SciTech Forum*, Jan. 2017 doi: 10.2514/6.2017-1845
- [2] Katoh, Y., Vasudevamurthy, G., Nozawa, T., and Snead, L. "Properties of zirconium carbide for nuclear fuel applications," *Journal of Nuclear Materials*, Vol. 441, No. 1-3, Oct. 2013, pp. 718–742.
- [3]Rana, D.-S., & Farnan, I. (2021). Non-stoichiometry and radiation damage effects in zirconium carbide and layered carbide ceramics for nuclear fuel cladding applications (thesis). University of Cambridge.
- [4] Gasparrini, C., Chater, R. J., Horlait, D., Vandeperre, L., Lee, W. E. "Zirconium carbide oxidation: Kinetics and oxygen diffusion through the intermediate layer," *Journal of the American Ceramic Society*, Feb. 2018, doi: 10.1111/jace.15479
- [5] Gasparrini, C., Rana, D. S., Le Brun, N., Horlait, D., Markides, C.N., Farnan, I., Lee, W. E., "On the stoichiometry of zirconium carbide," *Sci Rep*, Vol. 10, No. 6347, 2020 https://doi.org/10.1038/s41598-020-63037-0
- [6] Rama Rao, G.A., Venugopal, V., "Kinetics and mechanism of the oxidation of ZrC," *Journal of Alloys and Compounds*, Vol. 206, No. 1044, 1994, pp. 237-242
- [7] Shimada, S., Ishii, T., G.A., "Oxidation Kinetics of Zirconium Carbide at Relatively Low Temperatures," *Journal of the American Ceramic Society*, Vol. 73, No. 10, 1990, 2804-808
- [8] Kuriakose, A. K., Margrave, J. L., "The Oxidation Kinetics of Zirconium Diboride and Zirconium Carbide at High Temperatures," *J. Electrochem. Soc.*, Vol. 111, No. 827, 1964

ZrC Fabrication

- Solid Phase reactions
 - Reduction of ZrO₂ with Carbon
 - Intermediate oxycarbide phases
- Powder sintering
 - Potentially Non-isotropic
 - Stoichiometry depends on Zr:C molar ratio
 - Customizable if properly controlled
- Solution based fabrication
 - Diffusional reaction
 - Long timescales required
 - Residual oxygen impurities
- Vapor Phase
 - Low porosity, limited impurities
 - Difficulty due to use of zirconium halides as feed gas
 - Provide control over density and stoichiometry
 - Specific to coatings

Influences on ZrC Properties

- Carbon to Zirconium molar ratio
- Chemical impurities
 - Additives and stabilizers
 - Oxygen impurities at carbon defect sites
- Secondary phases
 - Ex. Grain boundary phases
- Grain size, morphology, orientation, and texture
- Porosity, pore size, tortuosity

