68 research outputs found

    Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the Arctic summer

    Get PDF
    Aerosol–cloud interaction is considered one of the largest sources of uncertainty in radiative forcing estimations. To better understand the role of black carbon (BC) aerosol as a cloud nucleus and the impact of clouds on its vertical distribution in the Arctic, we report airborne in situ measurements of BC particles in the European Arctic near Svalbard during the “Arctic CLoud Observations Using airborne measurements during polar Day” (ACLOUD) campaign held in the summer of 2017. BC was measured with a single-particle soot photometer aboard the Polar 6 research aircraft from the lowest atmospheric layer up to approximately 3500 m a.s.l (metres above sea level). During in-cloud flight transects, BC particles contained in liquid droplets (BC residuals) were sampled through a counterflow virtual impactor (CVI) inlet. Four flights, conducted in the presence of low-level, surface-coupled, inside-inversion, and mixed-phase clouds over sea ice, were selected to address the variability in BC above, below, and within the cloud layer. First, the increase in size and coating thickness of BC particles from the free troposphere to the cloud-dominated boundary layer confirmed that ground observations were not representative of upper atmospheric layers. Second, although only 1 % of liquid droplets contained a BC particle, the higher number concentration of BC residuals than BC particles sampled below cloud indicated that the totality of below-cloud BC was activated by nucleation scavenging but also that alternative scavenging processes such as the activation of free-tropospheric BC at the cloud top might occur. Third, the efficient exchange of aerosol particles at cloud bottom was confirmed by the similarity of the size distribution of BC residuals and BC particles sampled below cloud. Last, the increase in the BC residual number concentration (+31 %) and geometric mean diameter (+38 %) from the cloud top to the cloud bottom and the absolute enrichment in larger BC residuals compared with outside of the cloud supported the hypothesis of concomitant scavenging mechanisms but also suggested the formation of BC agglomerates caused by cloud processing. The vertical evolution of BC properties from inside the cloud and below the cloud indicated an efficient aerosol exchange at cloud bottom, which might include activation, cloud processing, and sub-cloud release of processed BC agglomerates. In the case of persistent low-level Arctic clouds, this cycle may reiterate multiple times, adding an additional degree of complexity to the understanding of cloud processing of BC particles in the Arctic

    Anisotropic s-wave superconductivity in MgB_2

    Full text link
    It has recently been observed that MgB_2 is a superconductor with a high transition temperature. Here we propose a model of anisotropic s-wave superconductivity which consistently describes the observed properties of this compound, including the thermodynamic and optical response in sintered MgB_2 wires. We also determine the shape of the quasiparticle density of states and the anisotropy of the upper critical field and the superfluid density which should be detectable once single-crystal samples become available.Comment: RevTex, 10 pages with 4 eps figure

    Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes

    Get PDF
    Rhamnolipids are known as very efficient biosurfactant molecules. They are used in a wide range of industrial applications including food, cosmetics, pharmaceutical formulations and bioremediation of pollutants. The present review provides an overview of the effect of rhamnolipids in animal and plant defense responses. We describe the current knowledge on the stimulation of plant and animal immunity by these molecules, as well as on their direct antimicrobial properties. Given their ecological acceptance owing to their low toxicity and biodegradability, rhamnolipids have the potential to be useful molecules in medicine and to be part of alternative strategies in order to reduce or replace pesticides in agriculture

    A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign

    Get PDF
    The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) cam- paign was carried out north-west of Svalbard (Norway) between 23 May and 6 June 2017. The objective of ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification. Two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic meteorological parameters, as well as for turbulent and radiative energy fluxes. In addition, on Polar 5 active and passive remote sensing instruments were installed, while Polar 6 operated in situ instruments to characterize cloud and aerosol particles as well as trace gases. A detailed overview of the specifications, data processing, and data quality is provided here. It is shown that the scientific analysis of the ACLOUD data benefits from the coordinated operation of both aircraft. By combining the cloud remote sensing techniques operated on Polar 5, the synergy of multi-instrument cloud retrieval is illustrated. The remote sensing methods were validated us- ing truly collocated in situ and remote sensing observations. The data of identical instruments operated on both aircraft were merged to extend the spatial coverage of mean atmospheric quantities and turbulent and radiative flux measurement. Therefore, the data set of the ACLOUD campaign provides comprehensive in situ and remote sensing observations characterizing the cloudy Arctic atmosphere. All processed, calibrated, and validated data are published in the World Data Center PANGAEA as instrument-separated data subsets (Ehrlich et al., 2019b, https://doi.org/10.1594/PANGAEA.902603)

    Clinical complexity and impact of the ABC (Atrial fibrillation Better Care) pathway in patients with atrial fibrillation: a report from the ESC-EHRA EURObservational Research Programme in AF General Long-Term Registry

    Get PDF
    Background: Clinical complexity is increasingly prevalent among patients with atrial fibrillation (AF). The ‘Atrial fibrillation Better Care’ (ABC) pathway approach has been proposed to streamline a more holistic and integrated approach to AF care; however, there are limited data on its usefulness among clinically complex patients. We aim to determine the impact of ABC pathway in a contemporary cohort of clinically complex AF patients. Methods: From the ESC-EHRA EORP-AF General Long-Term Registry, we analysed clinically complex AF patients, defined as the presence of frailty, multimorbidity and/or polypharmacy. A K-medoids cluster analysis was performed to identify different groups of clinical complexity. The impact of an ABC-adherent approach on major outcomes was analysed through Cox-regression analyses and delay of event (DoE) analyses. Results: Among 9966 AF patients included, 8289 (83.1%) were clinically complex. Adherence to the ABC pathway in the clinically complex group reduced the risk of all-cause death (adjusted HR [aHR]: 0.72, 95%CI 0.58–0.91), major adverse cardiovascular events (MACEs; aHR: 0.68, 95%CI 0.52–0.87) and composite outcome (aHR: 0.70, 95%CI: 0.58–0.85). Adherence to the ABC pathway was associated with a significant reduction in the risk of death (aHR: 0.74, 95%CI 0.56–0.98) and composite outcome (aHR: 0.76, 95%CI 0.60–0.96) also in the high-complexity cluster; similar trends were observed for MACEs. In DoE analyses, an ABC-adherent approach resulted in significant gains in event-free survival for all the outcomes investigated in clinically complex patients. Based on absolute risk reduction at 1 year of follow-up, the number needed to treat for ABC pathway adherence was 24 for all-cause death, 31 for MACEs and 20 for the composite outcome. Conclusions: An ABC-adherent approach reduces the risk of major outcomes in clinically complex AF patients. Ensuring adherence to the ABC pathway is essential to improve clinical outcomes among clinically complex AF patients

    Impact of renal impairment on atrial fibrillation: ESC-EHRA EORP-AF Long-Term General Registry

    Get PDF
    Background: Atrial fibrillation (AF) and renal impairment share a bidirectional relationship with important pathophysiological interactions. We evaluated the impact of renal impairment in a contemporary cohort of patients with AF. Methods: We utilised the ESC-EHRA EORP-AF Long-Term General Registry. Outcomes were analysed according to renal function by CKD-EPI equation. The primary endpoint was a composite of thromboembolism, major bleeding, acute coronary syndrome and all-cause death. Secondary endpoints were each of these separately including ischaemic stroke, haemorrhagic event, intracranial haemorrhage, cardiovascular death and hospital admission. Results: A total of 9306 patients were included. The distribution of patients with no, mild, moderate and severe renal impairment at baseline were 16.9%, 49.3%, 30% and 3.8%, respectively. AF patients with impaired renal function were older, more likely to be females, had worse cardiac imaging parameters and multiple comorbidities. Among patients with an indication for anticoagulation, prescription of these agents was reduced in those with severe renal impairment, p <.001. Over 24 months, impaired renal function was associated with significantly greater incidence of the primary composite outcome and all secondary outcomes. Multivariable Cox regression analysis demonstrated an inverse relationship between eGFR and the primary outcome (HR 1.07 [95% CI, 1.01–1.14] per 10 ml/min/1.73 m2 decrease), that was most notable in patients with eGFR <30 ml/min/1.73 m2 (HR 2.21 [95% CI, 1.23–3.99] compared to eGFR ≥90 ml/min/1.73 m2). Conclusion: A significant proportion of patients with AF suffer from concomitant renal impairment which impacts their overall management. Furthermore, renal impairment is an independent predictor of major adverse events including thromboembolism, major bleeding, acute coronary syndrome and all-cause death in patients with AF

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    Get PDF
    Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P <.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Exploring Instruction-Fetch Bandwidth Requirement in Wide-Issue Superscalar Processors

    Get PDF
    The effective performance of wide-issue superscalar processors depends on many parameters, such as branch prediction accuracy, available instruction-level parallelism, and instruction-fetch bandwidth. This paper explores the relations between some of these parameters, and more particularly, the requirement in instruction-fetch bandwidth. We introduce new enhancements to boost effectively the instruction-fetch bandwidth of conventional fetch engines. However, experiments strongly show that performance improves less for a given instruction-fetch bandwidth gain as the base fetch bandwidth increases. At the level of bandwidth exhibited by the proposed schemes, the performance improvement is small. This clearly brings to light potential relations between the fetch bandwidth and the other parameters. We provide a model to explain this behavior and quantify some relations. Based on the experimental observation that the available parallelism in an instruction window of size N grows as the sq..

    A stateless, content-directed data prefetching mechanism

    No full text
    Although central processor speeds continues to improve, improve-ments in overall system performance are increasingly hampered by memory latency, especially for pointer-intensive applications. To counter this loss of performance, numerous data and instruc-tion prefetch mechanisms have been proposed. Recently, several proposals have posited a memory-side prefetcher; typically, these prefetchers involve a distinct processor that executes a program slice that would effectively prefetch data needed by the primary program. Alternative designs embody large state tables that learn the miss reference behavior of the processor and attempt to prefetch likely misses. This paper proposes Content-Directed Data Prefetching, a data prefetching architecture that exploits the memory allocation used by operating systems and runtime systems to improve the perfor-mance of pointer-intensive applications constructed using modem language systems. This technique is modeled after conservative garbage collection, and prefetches "likely " virtual addresses ob-served in memory references. This prefetching mechanism uses the underlying data of the application, and provides an 11.3 % speedup using no additionalprocessor state. By adding less than % space overhead to the second level cache, performance can be further in-creased to 12.6 % across a range of"real world " applications. 1
    corecore