74 research outputs found

    Ecology of the collapse of Rapa Nui society

    Get PDF
    Collapses of food producer societies are recurrent events in prehistory and have triggered a growing concern for identifying the underlying causes of convergences/divergences across cultures around the world. One of the most studied and used as a paradigmatic case is the population collapse of the Rapa Nui society. Here, we test different hypotheses about it by developing explicit population dynamic models that integrate feedbacks between climatic, demographic and ecological factors that underpinned the sociocultural trajectory of these people. We evaluate our model outputs against a reconstruction of past population size based on archaeological radiocarbon dates from the island. The resulting estimated demographic declines of the Rapa Nui people are linked to the long-term effects of climate change on the island's carrying capacity and, in turn, on the 'per-capita food supply'

    An integrated approach to pathogen transmission via environmental reservoirs

    Get PDF
    To mitigate the effects of zoonotic diseases on human and animal populations, it is critical to understand what factors alter transmission dynamics. Here we assess the risk of exposure to lethal concentrations of the anthrax bacterium, Bacillus anthracis, for grazing animals in a natural system over time through different transmission mechanisms. We follow pathogen concentrations at anthrax carcass sites and waterholes for five years and estimate infection risk as a function of grass, soil or water intake, age of carcass sites, and the exposure required for a lethal infection. Grazing, not drinking, seems the dominant transmission route, and transmission is more probable from grazing at carcass sites 1–2 years of age. Unlike most studies of virulent pathogens that are conducted under controlled conditions for extrapolation to real situations, we evaluate exposure risk under field conditions to estimate the probability of a lethal dose, showing that not all reservoirs with detectable pathogens are significant transmission pathways

    Trees Wanted—Dead or Alive! Host Selection and Population Dynamics in Tree-Killing Bark Beetles

    Get PDF
    Bark beetles (Coleoptera: Curculionidae, Scolytinae) feed and breed in dead or severely weakened host trees. When their population densities are high, some species aggregate on healthy host trees so that their defences may be exhausted and the inner bark successfully colonized, killing the tree in the process. Here we investigate under what conditions participating with unrelated conspecifics in risky mass attacks on living trees is an adaptive strategy, and what this can tell us about bark beetle outbreak dynamics. We find that the outcome of individual host selection may deviate from the ideal free distribution in a way that facilitates the emergence of tree-killing (aggressive) behavior, and that any heritability on traits governing aggressiveness seems likely to exist in a state of flux or cycles consistent with variability observed in natural populations. This may have implications for how economically and ecologically important species respond to environmental changes in climate and landscape (forest) structure. The population dynamics emerging from individual behavior are complex, capable of switching between “endemic” and “epidemic” regimes spontaneously or following changes in host availability or resistance. Model predictions are compared to empirical observations, and we identify some factors determining the occurrence and self-limitation of epidemics

    Quantifying the Ocean, Freshwater and Human Effects on Year-to-Year Variability of One-Sea-Winter Atlantic Salmon Angled in Multiple Norwegian Rivers

    Get PDF
    Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979–2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to conserve this species

    Human plague: An old scourge that needs new answers

    Get PDF
    Yersinia pestis, the bacterial causative agent of plague, remains an important threat to human health. Plague is a rodent-borne disease that has historically shown an outstanding ability to colonize and persist across different species, habitats, and environments while provoking sporadic cases, outbreaks, and deadly global epidemics among humans. Between September and November 2017, an outbreak of urban pneumonic plague was declared in Madagascar, which refocused the attention of the scientific community on this ancient human scourge. Given recent trends and plague’s resilience to control in the wild, its high fatality rate in humans without early treatment, and its capacity to disrupt social and healthcare systems, human plague should be considered as a neglected threat. A workshop was held in Paris in July 2018 to review current knowledge about plague and to identify the scientific research priorities to eradicate plague as a human threat. It was concluded that an urgent commitment is needed to develop and fund a strong research agenda aiming to fill the current knowledge gaps structured around 4 main axes: (i) an improved understanding of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii) human and societal responses; (iii) improved diagnostic tools and case management; and (iv) vaccine development. These axes should be cross-cutting, translational, and focused on delivering context-specific strategies. Results of this research should feed a global control and prevention strategy within a “One Health” approach

    Mapping the Regional Transition to Cyclicity in Clethrionomys rufocanus: Spectral Densities and Functional Data Analysis

    Get PDF
    We study the regional transitions in dynamics of the gray-sided vole, Clethrionomys rufocanus, within Hokkaido, Japan. The data set consists of 225 time series of varying length (most from 23 to 31 years long) collected between 1962 and 1992 by the Forestry Agency of the Japanese Government. To see clearly how the periodic behavior changes geographically, we estimate the spectral density functions of the growth rates of all populations using a log-spline method. We subsequently apply functional data analysis to the estimated densities. The functional data analysis is, in this context, analogous to a principal component analysis applied to curves. We plot the results of the analysis on the map of Hokkaido, to reveal a clear transition from relatively stable populations in the southwest and west to populations undergoing 3-4 year cycles in the northeast and east. The degree of seasonality in the vegetation and the rodent demography appear to be strongest in the cyclic area. We briefly speculate that the destabilization of the rodent dynamics is linked to increased seasonal-forcing on the trophic interactions in which the gray-sided voles are involved

    The Population Dynamics of the Vole Clethrionomys rufocanus in Hokkaido, Japan

    Get PDF
    Population dynamics of the gray sided-vole, Clethrionomys rufocanus, in Hokkaido, Japan were described on the basis of 225 time series (being from 12 to 31 years long); 194 of the time series have a length of 23 years or longer. The time series were classified into 11 groups according to geographic proximity and topographical characteristics of the island of Hokkaido. Mean abundance varied among populations from 1.07 to 21.07 individuals per 150 trap-nights. The index of variability for population fluctuation (s-index) ranged from 0.204 to 0.629. The other index for population variability (amplitude on log-10 scale) ranged from 0.811 to 2.743. Mean abundance and variability of populations were higher in the more northern and eastern regions of the island. Most populations, except for the southernmost populations, exhibited significant direct density-dependence in population growth. Detection rate for delayed density-dependence varied among groups from 0% to 22.6%. Both direct and delayed density-dependence tended to be stronger in the more northern and eastern populations. The proportion of cyclic populations was higher in the northern-eastern areas than that in the southern-western areas. There was a clear gradient from the asynchronous populations in southwest, to the highly synchronized populations in the northwest
    corecore