364 research outputs found
One Health approach to controlling a Q fever outbreak on an Australian goat farm
A recent outbreak of Q fever was linked to an intensive goat and sheep dairy farm in Victoria, Australia, 2012-2014. Seventeen employees and one family member were confirmed with Q fever over a 28-month period, including two culture-positive cases. The outbreak investigation and management involved a One Health approach with representation from human, animal, environmental and public health. Seroprevalence in non-pregnant milking goats was 15% [95% confidence interval (CI) 7–27]; active infection was confirmed by positive quantitative PCR on several animal specimens. Genotyping of Coxiella burnetii DNA obtained from goat and human specimens was identical by two typing methods. A number of farming practices probably contributed to the outbreak, with similar precipitating factors to the Netherlands outbreak, 2007-2012. Compared to workers in a high-efficiency particulate arrestance (HEPA) filtered factory, administrative staff in an unfiltered adjoining office and those regularly handling goats and kids had 5·49 (95% CI 1·29–23·4) and 5·65 (95% CI 1·09–29·3) times the risk of infection, respectively; suggesting factory workers were protected from windborne spread of organisms. Reduction in the incidence of human cases was achieved through an intensive human vaccination programme plus environmental and biosecurity interventions. Subsequent non-occupational acquisition of Q fever in the spouse of an employee, indicates that infection remains endemic in the goat herd, and remains a challenge to manage without source control
Flinders Island spotted fever rickettsioses caused by "marmionii" strain of rickettsia honei, Eastern Australia
Australia has 4 rickettsial diseases: murine typhus, Queensland tick typhus, Flinders Island spotted fever, and scrub typhus. We describe 7 cases of a rickettsiosis with an acute onset and symptoms of fever (100%), headache (71%), arthralgia (43%), myalgia (43%), cough (43%), maculopapular/petechial rash (43%), nausea (29%), pharyngitis (29%), lymphadenopathy (29%), and eschar (29%). Cases were most prevalent in autumn and from eastern Australia, including Queensland, Tasmania, and South Australia. One patient had a history of tick bite (Haemaphysalis novaeguineae). An isolate shared 99.2%, 99.8%, 99.8%, 99.9%, and 100% homology with the 17 kDa, ompA, gltA, 16S rRNA, and Sca4 genes, respectively, of Rickettsia honei. This Australian rickettsiosis has similar symptoms to Flinders Island spotted fever, and the strain is genetically related to R. honei. It has been designated the "marmionii" strain of R. honei, in honor of Australian physician and scientist Barrie Marmion
Novel Rickettsia in Ticks, Tasmania, Australia
A novel rickettsia was detected in Ixodes tasmani ticks collected from Tasmanian devils. A total of 55% were positive for the citrate synthase gene by quantitative PCR. According to current criteria for rickettsia speciation, this new rickettsia qualifies as Candidatus Rickettsia tasmanensis, named after the location of its detection
"Candidatus Rickettsia kellyi," India
We report the first laboratory-confirmed human infection due to a new rickettsial genotype in India, "Candidatus Rickettsia kellyi," in a 1-year-old boy with fever and maculopapular rash. The diagnosis was made by serologic testing, polymerase chain reaction detection, and immunohistochemical testing of the organism from a skin biopsy specimen
Gaps and inconsistencies in the current knowledge and implementation of biosafety and biosecurity practices for rickettsial pathogens
Introduction: Rickettsia spp. and Orientia spp. are the causes of neglected infections that can lead to severe febrile and systemic illnesses in humans. Implementing proper biosafety practices when handling these pathogens is crucial to ensure a safe and sustainable work environment. It is essential to assess the current knowledge and identify any potential gaps to develop effective measures that minimise the risk of exposure to these pathogens. By doing so, we can establish a comprehensive framework that promotes safety, mitigates hazards, and safeguards the well-being of personnel and the surrounding community.
Methods and results: This review aimed to synthesise and determine the evidence base for biosafety precautions for Rickettsia spp. and Orientia spp. pathogens. Enhancing our understanding of the relative infectious risk associated with different strains of Rickettsia and Orientia spp. requires identifying the infectious dose of these pathogens that can cause human disease. The application of risk groups for Rickettsia and Orientia spp. is inconsistent across jurisdictions. There is also incomplete evidence regarding decontamination methods for these pathogens. With regards to Orientia spp. most of the available information is derived from experiments conducted with Rickettsia spp.
Conclusions: Rickettsia and Orientia spp. are neglected diseases, as demonstrated by the lack of evidence-based and specific biosafety information about these pathogens. In the case of Orientia spp., most of the available information is derived from Rickettsia spp., which may not be appropriate and overstate the risks of working with this pathogen. The advent of effective antibiotic therapy and a better understanding of the true hazards and risks associated with pathogen manipulation should inform decisions, allowing a sustainable and safe work environment
Validation of an Indirect Immunofluorescence Assay and Commercial Q Fever Enzyme-Linked Immunosorbent Assay for Use in Macropods
Kangaroos are considered to be an important reservoir of Q fever in Australia, although there is limited knowledge on the true prevalence and distribution of coxiellosis in Australian macropod populations. Serological tests serve as useful surveillance tools, but formal test validation is needed to be able to estimate true seroprevalence rates, and few tests have been validated to screen wildlife species for Q fever. In this study, we modified and optimized a phase-specific indirect immunofluorescence assay (IFA) for the detection of IgG antibodies against Coxiella burnetii in macropod sera. The assay was validated against the commercially available ID Screen Q fever indirect multispecies enzyme-linked immunosorbent assay (ELISA) kit (IDVet, Grabels, France) to estimate the diagnostic sensitivity and specificity of each assay, using Bayesian latent class analysis. A direct comparison of the two tests was performed by testing 303 serum samples from 10 macropod populations from the east coast of Australia and New Zealand. The analysis indicated that the IFA had relatively high diagnostic sensitivity (97.6% [95% credible interval [CrI], 88.0 to 99.9]) and diagnostic specificity (98.5% [95% CrI, 94.4 to 99.9]). In comparison, the ELISA had relatively poor diagnostic sensitivity (42.1% [95% CrI, 33.7 to 50.8]) and similar diagnostic specificity (99.2% [95% CrI, 96.4 to 100]) using the cutoff values recommended by the manufacturer. The estimated true seroprevalence of C. burnetii exposure in the macropod populations included in this study ranged from 0% in New Zealand and Victoria, Australia, up to 94.2% in one population from New South Wales, Australia.fals
Acute Q fever in patients with an influenza-like illness in regional New South Wales, Australia.
INTRODUCTION: Query (Q) fever is a zoonosis caused by the bacterium Coxiella burnetii typically presenting as an influenza-like illness (ILI) with or without hepatitis. The infection may be missed by clinicians in settings of low endemicity, as the presentation is clinically not specific, and there are many more common differential diagnoses for ILI including SARS-CoV-2 infection. METHODS: Residual serum samples were retrospectively tested for Phase 1 and 2 Q fever-specific IgM, IgG, IgA antibodies by indirect immunofluorescence and C. burnetii DNA by polymerase chain reaction. They had not been previously tested for Q fever, originating from undiagnosed patients with probable ILI, aged 10-70 years and living in regional New South Wales, Australia. The results were compared with contemperaneous data on acute Q fever diagnostic tests which had been performed based on clinicians requests from a geographically similar population. RESULTS: Only one (0.2%) instance of missed acute Q fever was identified after testing samples from 542 eligible patients who had probable ILI between 2016-2023. Laboratory data showed that during the same period, 731 samples were tested for acute Q fever for clinician-initiated requests and of those 70 (9.6%) were positive. Probability of being diagnosed with Q fever after a clinician initiated request was similar regardless of the patients sex, age and the calendar year of sampling. CONCLUSION: In this sample, Q fever was most likely to be diagnosed via clinician requested testing rather than by testing of undiagnosed patients with an influenza like illness
Rickettsia helvetica in Patient with Meningitis, Sweden, 2006
Pathogenicity of Rickettsia helvetica is relatively unknown. We isolated a spotted fever group rickettsial organism from a patient with subacute meningitis. Nucleotide sequences of the 16S rRNA, ompB, and 17kDa genes identified the isolate as R. helvetica. This organism may be associated with serious infections such as central nervous system disorders
Rickettsia felis in Fleas, Western Australia
This study is the first confirmation of Rickettsia felis in Australia. The organism was identified from 4 species of fleas obtained from dogs and cats in Western Australia, by using polymerase chain reaction amplification and DNA sequencing of the citrate synthase and outer membrane protein A genes
- …
