701 research outputs found
Quantized algebras of functions on homogeneous spaces with Poisson stabilizers
Let G be a simply connected semisimple compact Lie group with standard
Poisson structure, K a closed Poisson-Lie subgroup, 0<q<1. We study a
quantization C(G_q/K_q) of the algebra of continuous functions on G/K. Using
results of Soibelman and Dijkhuizen-Stokman we classify the irreducible
representations of C(G_q/K_q) and obtain a composition series for C(G_q/K_q).
We describe closures of the symplectic leaves of G/K refining the well-known
description in the case of flag manifolds in terms of the Bruhat order. We then
show that the same rules describe the topology on the spectrum of C(G_q/K_q).
Next we show that the family of C*-algebras C(G_q/K_q), 0<q\le1, has a
canonical structure of a continuous field of C*-algebras and provides a strict
deformation quantization of the Poisson algebra \C[G/K]. Finally, extending a
result of Nagy, we show that C(G_q/K_q) is canonically KK-equivalent to C(G/K).Comment: 23 pages; minor changes, typos correcte
Transverse Fresnel-Fizeau drag effects in strongly dispersive media
A light beam normally incident upon an uniformly moving dielectric medium is
in general subject to bendings due to a transverse Fresnel-Fizeau light drag
effect. In conventional dielectrics, the magnitude of this bending effect is
very small and hard to detect. Yet, it can be dramatically enhanced in strongly
dispersive media where slow group velocities in the m/s range have been
recently observed taking advantage of the electromagnetically induced
transparency (EIT) effect. In addition to the usual downstream drag that takes
place for positive group velocities, we predict a significant anomalous
upstream drag to occur for small and negative group velocities. Furthermore,
for sufficiently fast speeds of the medium, higher order dispersion terms are
found to play an important role and to be responsible for peculiar effects such
as light propagation along curved paths and the restoration of the spatial
coherence of an incident noisy beam. The physics underlying this new class of
slow-light effects is thoroughly discussed
On the equivalence of the Langevin and auxiliary field quantization methods for absorbing dielectrics
Recently two methods have been developed for the quantization of the
electromagnetic field in general dispersing and absorbing linear dielectrics.
The first is based upon the introduction of a quantum Langevin current in
Maxwell's equations [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996);
Ho Trung Dung, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998); S.
Scheel, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998)], whereas
the second makes use of a set of auxiliary fields, followed by a canonical
quantization procedure [A. Tip, Phys. Rev. A 57, 4818 (1998)]. We show that
both approaches are equivalent.Comment: 7 pages, RevTeX, no figure
Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial.
Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor.
To investigate whether TTFields improves progression-free and overall survival of patients with glioblastoma, a fatal disease that commonly recurs at the initial tumor site or in the central nervous system.
In this randomized, open-label trial, 695 patients with glioblastoma whose tumor was resected or biopsied and had completed concomitant radiochemotherapy (median time from diagnosis to randomization, 3.8 months) were enrolled at 83 centers (July 2009-2014) and followed up through December 2016. A preliminary report from this trial was published in 2015; this report describes the final analysis.
Patients were randomized 2:1 to TTFields plus maintenance temozolomide chemotherapy (n = 466) or temozolomide alone (n = 229). The TTFields, consisting of low-intensity, 200 kHz frequency, alternating electric fields, was delivered (≥ 18 hours/d) via 4 transducer arrays on the shaved scalp and connected to a portable device. Temozolomide was administered to both groups (150-200 mg/m2) for 5 days per 28-day cycle (6-12 cycles).
Progression-free survival (tested at α = .046). The secondary end point was overall survival (tested hierarchically at α = .048). Analyses were performed for the intent-to-treat population. Adverse events were compared by group.
Of the 695 randomized patients (median age, 56 years; IQR, 48-63; 473 men [68%]), 637 (92%) completed the trial. Median progression-free survival from randomization was 6.7 months in the TTFields-temozolomide group and 4.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.52-0.76; P < .001). Median overall survival was 20.9 months in the TTFields-temozolomide group vs 16.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.53-0.76; P < .001). Systemic adverse event frequency was 48% in the TTFields-temozolomide group and 44% in the temozolomide-alone group. Mild to moderate skin toxicity underneath the transducer arrays occurred in 52% of patients who received TTFields-temozolomide vs no patients who received temozolomide alone.
In the final analysis of this randomized clinical trial of patients with glioblastoma who had received standard radiochemotherapy, the addition of TTFields to maintenance temozolomide chemotherapy vs maintenance temozolomide alone, resulted in statistically significant improvement in progression-free survival and overall survival. These results are consistent with the previous interim analysis.
clinicaltrials.gov Identifier: NCT00916409
Particle density fluctuations
Event-by-event fluctuations in the multiplicities of charged particles and
photons at SPS energies are discussed. Fluctuations are studied by controlling
the centrality of the reaction and rapidity acceptance of the detectors.
Results are also presented on the event-by-event study of correlations between
the multiplicity of charged particles and photons to search for DCC-like
signals.Comment: Talk presented at Quark Matter 2002, Nantes, Franc
Suppression of High-p_T Neutral Pion Production in Central Pb+Pb Collisions at sqrt{s_NN} = 17.3 GeV Relative to p+C and p+Pb Collisions
Neutral pion transverse momentum spectra were measured in p+C and p+Pb
collisions at sqrt{s_NN} = 17.4 GeV at mid-rapidity 2.3 < eta_lab < 3.0 over
the range 0.7< p_T < 3.5 GeV/c. The spectra are compared to pi0 spectra
measured in Pb+Pb collisions at sqrt{s_NN} = 17.3 GeV in the same experiment.
For a wide range of Pb+Pb centralities (N_part < 300) the yield of pi0's with
p_T > 2 GeV/c is larger than or consistent with the p+C or p+Pb yields scaled
with the number of nucleon-nucleon collisions (N_coll), while for central Pb+Pb
collisions with N_part > 350 the pi0 yield is suppressed.Comment: 5 pages, 4 figure
Search for DCC in 158A GeV Pb+Pb Collisions
A detailed analysis of the phase space distributions of charged particles and
photons have been carried out using two independent methods. The results
indicate the presence of nonstatistical fluctuations in localized regions of
phase space.Comment: Talk at the PANIC99 Conference, June 9-16, 199
Pion Freeze-Out Time in Pb+Pb Collisions at 158 A GeV/c Studied via pi-/pi+ and K-/K+ Ratios
The effect of the final state Coulomb interaction on particles produced in
Pb+Pb collisions at 158 A GeV/c has been investigated in the WA98 experiment
through the study of the pi-/pi+ and K-/K+ ratios measured as a function of
transverse mass. While the ratio for kaons shows no significant transverse mass
dependence, the pi-/pi+ ratio is enhanced at small transverse mass values with
an enhancement that increases with centrality. A silicon pad detector located
near the target is used to estimate the contribution of hyperon decays to the
pi-/pi+ ratio. The comparison of results with predictions of the RQMD model in
which the Coulomb interaction has been incorporated allows to place constraints
on the time of the pion freeze-out.Comment: 9 pages, 12 figure
Present Status and Future of DCC Analysis
Disoriented Chiral Condensates (DCC) have been predicted to form in high
energy heavy ion collisions where the approximate chiral symmetry of QCD has
been restored. This leads to large imbalances in the production of charged to
neutral pions. Sophisticated analysis methods are being developed to
disentangle DCC events out of the large background of events with
conventionally produced particles. We present a short review of current
analysis methods and future prospects.Comment: 12 pages, 5 figures. Invited talk presented at the 13th International
Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 97),
Tsukuba, Japan, 1-5 Dec 199
Central Pb+Pb Collisions at 158 A GeV/c Studied by Pion-Pion Interferometry
Two-particle correlations have been measured for identified negative pions
from central 158 AGeV Pb+Pb collisions and fitted radii of about 7 fm in all
dimensions have been obtained. A multi-dimensional study of the radii as a
function of kT is presented, including a full correction for the resolution
effects of the apparatus. The cross term Rout-long of the standard fit in the
Longitudinally CoMoving System (LCMS) and the vl parameter of the generalised
Yano-Koonin fit are compatible with 0, suggesting that the source undergoes a
boost invariant expansion. The shapes of the correlation functions in Qinv and
Qspace have been analyzed in detail. They are not Gaussian but better
represented by exponentials. As a consequence, fitting Gaussians to these
correlation functions may produce different radii depending on the acceptance
of the experimental setup used for the measurement.Comment: 13 pages including 10 figure
- …