501 research outputs found

    Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial

    Get PDF
    Background: Previous trials have shown that anti-EGFR monoclonal antibodies can improve clinical outcomes of patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SCCHN). We assessed the efficacy and safety of panitumumab combined with cisplatin and fluorouracil as first-line treatment for these patients. Methods: This open-label phase 3 randomised trial was done at 126 sites in 26 countries. Eligible patients were aged at least 18 years; had histologically or cytologically confi rmed SCCHN; had distant metastatic or locoregionally recurrent disease, or both, that was deemed to be incurable by surgery or radiotherapy; had an Eastern Cooperative Oncology Group performance status of 1 or less; and had adequate haematological, renal, hepatic, and cardiac function. Patients were randomly assigned according to a computer-generated randomisation sequence (1:1; stratifi ed by previous treatment, primary tumour site, and performance status) to one of two groups. Patients in both groups received up to six 3-week cycles of intravenous cisplatin (100 mg/m(2) on day 1 of each cycle) and fl uorouracil (1000 mg/m(2) on days 1-4 of each cycle); those in the experimental group also received intravenous panitumumab (9 mg/kg on day 1 of each cycle). Patients in the experimental group could choose to continue maintenance panitumumab every 3 weeks. The primary endpoint was overall survival and was analysed by intention to treat. In a prospectively defi ned retrospective analysis, we assessed tumour human papillomavirus (HPV) status as a potential predictive biomarker of outcomes with a validated p16-INK4A (henceforth, p16) immunohistochemical assay. Patients and investigators were aware of group assignment; study statisticians were masked until primary analysis; and the central laboratory assessing p16 status was masked to identifi cation of patients and treatment. This trial is registered with ClinicalTrials. gov, number NCT00460265. Findings: Between May 15, 2007, and March 10, 2009, we randomly assigned 657 patients: 327 to the panitumumab group and 330 to the control group. Median overall survival was 11.1 months (95% CI 9.8-12.2) in the panitumumab group and 9.0 months (8.1-11.2) in the control group (hazard ratio [HR] 0.873, 95% CI 0.729-1.046; p = 0.1403). Median progression-free survival was 5.8 months (95% CI 5.6-6.6) in the panitumumab group and 4.6 months (4.1-5.4) in the control group (HR 0.780, 95% CI 0.659-0.922; p = 0.0036). Several grade 3 or 4 adverse events were more frequent in the panitumumab group than in the control group: skin or eye toxicity (62 [19%] of 325 included in safety analyses vs six [2%] of 325), diarrhoea (15 [5%] vs four [1%]), hypomagnesaemia (40 [12%] vs 12 [4%]), hypokalaemia (33 [10%] vs 23 [7%]), and dehydration (16 [5%] vs seven [2%]). Treatment-related deaths occurred in 14 patients (4%) in the panitumumab group and eight (2%) in the control group. Five (2%) of the fatal adverse events in the panitumumab group were attributed to the experimental agent. We had appropriate samples to assess p16 status for 443 (67%) patients, of whom 99 (22%) were p16 positive. Median overall survival in patients with p16-negative tumours was longer in the panitumumab group than in the control group (11.7 months [95% CI 9.7-13.7] vs 8.6 months [6.9-11.1]; HR 0.73 [95% CI 0.58-0.93]; p = 0.0115), but this difference was not shown for p16-positive patients (11.0 months [7.3-12.9] vs 12.6 months [7.7-17.4]; 1.00 [0.62-1.61]; p = 0.998). In the control group, p16-positive patients had numerically, but not statistically, longer overall survival than did p16-negative patients (HR 0.70 [95% CI 0.47-1.04]). Interpretation: Although the addition of panitumumab to chemotherapy did not improve overall survival in an unselected population of patients with recurrent or metastatic SCCHN, it improved progression-free survival and had an acceptable toxicity profile. p16 status could be a prognostic and predictive marker in patients treated with panitumumab and chemotherapy. Prospective assessment will be necessary to validate our biomarker findings

    Gas phase characterization of the noncovalent quaternary structure of Cholera toxin and the Cholera toxin B subunit pentamer

    Get PDF
    Cholera toxin (CTx) is an AB5 cytotonic protein that has medical relevance in cholera and as a novel mucosal adjuvant. Here, we report an analysis of the noncovalent homopentameric complex of CTx B chain (CTx B5) using electrospray ionization triple quadrupole mass spectrometry and tandem mass spectrometry and the analysis of the noncovalent hexameric holotoxin usingelectrospray ionization time-of-flight mass spectrometry over a range of pH values that correlate with those encountered by this toxin after cellular uptake. We show that noncovalent interactions within the toxin assemblies were maintained under both acidic and neutral conditions in the gas phase. However, unlike the related Escherichia coli Shiga-like toxin B5 pentamer (SLTx B), the CTx B5 pentamer was stable at low pH, indicating that additional interactions must be present within the latter. Structural comparison of the CTx B monomer interface reveals an additional Ξ±-helix that is absent in the SLTx B monomer. In silico energy calculations support interactions between this helix and the adjacent monomer. These data provide insight into the apparent stabilization of CTx B relative to SLTx B

    White Matter Network Architecture Guides Direct Electrical Stimulation Through Optimal State Transitions

    Full text link
    Electrical brain stimulation is currently being investigated as a therapy for neurological disease. However, opportunities to optimize such therapies are challenged by the fact that the beneficial impact of focal stimulation on both neighboring and distant regions is not well understood. Here, we use network control theory to build a model of brain network function that makes predictions about how stimulation spreads through the brain's white matter network and influences large-scale dynamics. We test these predictions using combined electrocorticography (ECoG) and diffusion weighted imaging (DWI) data who volunteered to participate in an extensive stimulation regimen. We posit a specific model-based manner in which white matter tracts constrain stimulation, defining its capacity to drive the brain to new states, including states associated with successful memory encoding. In a first validation of our model, we find that the true pattern of white matter tracts can be used to more accurately predict the state transitions induced by direct electrical stimulation than the artificial patterns of null models. We then use a targeted optimal control framework to solve for the optimal energy required to drive the brain to a given state. We show that, intuitively, our model predicts larger energy requirements when starting from states that are farther away from a target memory state. We then suggest testable hypotheses about which structural properties will lead to efficient stimulation for improving memory based on energy requirements. Our work demonstrates that individual white matter architecture plays a vital role in guiding the dynamics of direct electrical stimulation, more generally offering empirical support for the utility of network control theoretic models of brain response to stimulation

    Sensitivity of intermediate mass fragment flows to the symmetry energy

    Get PDF
    The NIMROD-ISiS array was used to study the transverse flow of intermediate mass fragments in 35 MeV/nucleon 70Zn+70Zn{}^{70}\mathrm{Zn}+{}^{70}\mathrm{Zn}, 64Zn+64Zn{}^{64}\mathrm{Zn}+{}^{64}\mathrm{Zn}, and 64Ni+64Ni{}^{64}\mathrm{Ni}+{}^{64}\mathrm{Ni} reactions. The intermediate mass fragment flow was previously shown to be sensitive to the density dependence of the symmetry energy. To explore the model dependence of the results, the antisymmetrized molecular dynamics, constrained molecular dynamics, and stochastic mean-field models were each compared to the experimental results to extract information on the form of the symmetry energy. The results demonstrate that sensitivity of the models to the nuclear equation of state can vary significantly based on the treatment of the nuclear dynamics. Despite the differences in the sensitivity, improved agreement with the experimental data is observed for each model with a stiff density dependence of the symmetry energy

    Investigation of transverse collective flow of intermediate mass fragments

    Get PDF
    The transverse flow of intermediate mass fragments (IMFs) has been investigated for the 35 MeV/u 70Zn+70Zn{}^{70}\mathrm{Zn}+{}^{70}\mathrm{Zn}, 64Zn+64Zn{}^{64}\mathrm{Zn}+{}^{64}\mathrm{Zn}, and 64Ni+64Ni{}^{64}\mathrm{Ni}+{}^{64}\mathrm{Ni} systems. A transition from the IMF transverse flow strongly depending on the mass of the system, in the most violent collisions, to a dependence on the charge of the system, for the peripheral reactions, is shown. This transition was shown to be sensitive to the density dependence of the symmetry energy using the antisymmetrized molecular-dynamics model. The results present an observable, the IMF transverse flow, that can be used to probe the nuclear equation of state. Comparison with the simulation demonstrated a preference for a stiff density dependence of the symmetry energy

    Transverse collective flow and midrapidity emission of isotopically identified light charged particles

    Get PDF
    The transverse flow and relative midrapidity yield of isotopically identified light charged particles (LCPs) has been examined for the 35 MeV/nucleon 70Zn+70Zn{}^{70}\mathrm{Zn}+{}^{70}\mathrm{Zn}, 64Zn+64Zn{}^{64}\mathrm{Zn}+{}^{64}\mathrm{Zn}, and 64Ni+64Ni{}^{64}\mathrm{Ni}+{}^{64}\mathrm{Ni} systems. A large enhancement of the midrapidity yield of the LCPs was observed relative to the yield near the projectile rapidity. In particular, this enhancement was increased for the more neutron-rich LCPs demonstrating a preference for the production of neutron-rich fragments in the midrapidity region. Additionally, the transverse flow of the LCPs was extracted, which provides insight into the average movement of the particles in the midrapidity region. Isotopic and isobaric effects were observed in the transverse flow of the fragments. In both cases, the transverse flow was shown to decrease with an increasing neutron content in the fragments. A clear inverse relationship between the transverse flow and the relative midrapidity yield is shown. The increased relative midrapidity emission produces a decreased transverse flow. The stochastic mean-field model was used for comparison to the experimental data. The results showed that the model was able to reproduce the general isotopic and isobaric trends for the midrapidity emission and transverse flow. The sensitivity of these observables to the density dependence of the symmetry energy was explored. The results indicate that the transverse flow and midrapidity emission of the LCPs are sensitive to the denisty dependence of the symmetry energy

    Performance of Risk-Based Criteria for Targeting Acute HIV Screening in San Francisco

    Get PDF
    Federal guidelines now recommend supplemental HIV RNA testing for persons at high risk for acute HIV infection. However, many rapid HIV testing sites do not include HIV RNA or p24 antigen testing due to concerns about cost, the need for results follow-up, and the impact of expanded venipuncture on clinic flow. We developed criteria to identify patients in a municipal STD clinic in San Francisco who are asymptomatic but may still be likely to have acute infection.Data were from patients tested with serial HIV antibody and HIV RNA tests to identify acute HIV infection. BED-CEIA results were used to classify non-acute cases as recent or longstanding. Demographics and self-reported risk behaviors were collected at time of testing. Multivariate models were developed and preliminarily evaluated using predictors associated with recent infection in bivariate analyses as a proxy for acute HIV infection. Multivariate models demonstrating β‰₯70% sensitivity for recent infection while testing ≀60% of patients in this development dataset were then validated by determining their performance in identifying acute infections.From 2004-2007, 137 of 12,622 testers had recent and 36 had acute infections. A model limiting acute HIV screening to MSM plus any one of a series of other predictors resulted in a sensitivity of 83.3% and only 47.6% of patients requiring testing. A single-factor model testing only patients reporting any receptive anal intercourse resulted in 88.9% sensitivity with only 55.2% of patients requiring testing.In similar high risk HIV testing sites, acute screening using "supplemental" HIV p24 antigen or RNA tests can be rationally targeted to testers who report particular HIV risk behaviors. By improving the efficiency of acute HIV testing, such criteria could facilitate expanded acute case identification

    Gene disruption by structural mutations drives selection in US rice breeding over the last century.

    Get PDF
    The genetic basis of general plant vigor is of major interest to food producers, yet the trait is recalcitrant to genetic mapping because of the number of loci involved, their small effects, and linkage. Observations of heterosis in many crops suggests that recessive, malfunctioning versions of genes are a major cause of poor performance, yet we have little information on the mutational spectrum underlying these disruptions. To address this question, we generated a long-read assembly of a tropical japonica rice (Oryza sativa) variety, Carolina Gold, which allowed us to identify structural mutations (>50 bp) and orient them with respect to their ancestral state using the outgroup, Oryza glaberrima. Supporting prior work, we find substantial genome expansion in the sativa branch. While transposable elements (TEs) account for the largest share of size variation, the majority of events are not directly TE-mediated. Tandem duplications are the most common source of insertions and are highly enriched among 50-200bp mutations. To explore the relative impact of various mutational classes on crop fitness, we then track these structural events over the last century of US rice improvement using 101 resequenced varieties. Within this material, a pattern of temporary hybridization between medium and long-grain varieties was followed by recent divergence. During this long-term selection, structural mutations that impact gene exons have been removed at a greater rate than intronic indels and single-nucleotide mutations. These results support the use of ab initio estimates of mutational burden, based on structural data, as an orthogonal predictor in genomic selection

    Phosphoprotein Associated with Glycosphingolipid-Enriched Microdomains Differentially Modulates Src Kinase Activity in Brain Maturation

    Get PDF
    Src family kinases (SFK) control multiple processes during brain development and function. We show here that the phosphoprotein associated with glycosphigolipid-enriched microdomains (PAG)/Csk binding protein (Cbp) modulates SFK activity in the brain. The timing and localization of PAG expression overlap with Fyn and Src, both of which we find associated to PAG. We demonstrate in newborn (P1) mice that PAG negatively regulates Src family kinases (SFK). P1 Pag1-/- mouse brains show decreased recruitment of Csk into lipid rafts, reduced phosphorylation of the inhibitory tyrosines within SFKs, and an increase in SFK activity of >/β€Š=β€Š50%. While in brain of P1 mice, PAG and Csk are highly and ubiquitously expressed, little Csk is found in adult brain suggesting altered modes of SFK regulation. In adult brain Pag1-deficiency has no effect upon Csk-distribution or inhibitory tyrosine phosphorylation, but kinase activity is now reduced (βˆ’20–30%), pointing to the development of a compensatory mechanism that may involve PSD93. The distribution of the Csk-homologous kinase CHK is not altered. Importantly, since the activities of Fyn and Src are decreased in adult Pag1-/- mice, thus presenting the reversed phenotype of P1, this provides the first in vivo evidence for a Csk-independent positive regulatory function for PAG in the brain
    • …
    corecore