40 research outputs found

    Fe65: A Scaffolding Protein of Actin Regulators

    Get PDF
    The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity

    APP dimer formation is initiated in the endoplasmic reticulum and differs between APP isoforms

    Get PDF
    The amyloid precursor protein (APP) is part of a larger gene family, which has been found to form homo- or heterotypic complexes with its homologues, whereby the exact molecular mechanism and origin of dimer formation remains elusive. In order to assess the cellular location of dimerization, we have generated a cell culture model system in CHO-K1 cells, stably expressing human APP, harboring dilysine-based organelle sorting motifs [KKAA-endoplasmic reticulum (ER); KKFF-Golgi], accomplishing retention within early secretory compartments. We show that APP exists as disulfide-bonded dimers upon ER retention after it was isolated from cells, and analyzed by SDS-polyacrylamide gel electrophoresis under non-reducing conditions. In contrast, strong denaturing and reducing conditions, or deletion of the E1 domain, resulted in the disappearance of those dimers. Thus we provide first evidence that a fraction of APP can associate via intermolecular disulfide bonds, likely generated between cysteines located in the extracellular E1 domain. We particularly visualize APP dimerization itself and identified the ER as subcellular compartment of its origin using biochemical or split GFP approaches. Interestingly, we also found that minor amounts of SDS-resistant APP dimers were located to the cell surface, revealing that once generated in the oxidative environment of the ER, dimers remained stably associated during transport. In addition, we show that APP isoforms encompassing the Kunitz-type protease inhibitor (KPI) domain exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-mediated cell aggregation of Drosophila Schneider S2-cells was isoform independent. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER

    A New Mint1 Isoform, but Not the Conventional Mint1, Interacts with the Small GTPase Rab6

    Full text link
    Small GTPases of the Rab family are important regulators of a large variety of different cellular functions such as membrane organization and vesicle trafficking. They have been shown to play a role in several human diseases. One prominent member, Rab6, is thought to be involved in the development of Alzheimer’s Disease, the most prevalent mental disorder worldwide. Previous studies have shown that Rab6 impairs the processing of the amyloid precursor protein (APP), which is cleaved to β-amyloid in brains of patients suffering from Alzheimer’s Disease. Additionally, all three members of the Mint adaptor family are implied to participate in the amyloidogenic pathway. Here, we report the identification of a new Mint1 isoform in a yeast two-hybrid screening, Mint1 826, which lacks an eleven amino acid (aa) sequence in the conserved C-terminal region. Mint1 826, but not the conventional Mint1, interacts with Rab6 via the PTB domain. This interaction is nucleotide-dependent, Rab6-specific and influences the subcellular localization of Mint1 826. We were able to detect and sequence a corresponding proteolytic peptide derived from cellular Mint1 826 by mass spectrometry proving the absence of aa 495–505 and could show that the deletion does not influence the ability of this adaptor protein to interact with APP. Taking into account that APP interacts and co-localizes with Mint1 826 and is transported in Rab6 positive vesicles, our data suggest that Mint1 826 bridges APP to the small GTPase at distinct cellular sorting points, establishing Mint1 826 as an important player in regulation of APP trafficking and processing

    Structural aspects and physiological consequences of APP/APLP trans-dimerization

    Get PDF
    The amyloid precursor protein (APP) is one of the key proteins in Alzheimer’s disease (AD), as it is the precursor of amyloid β (Aβ) peptides accumulating in amyloid plaques. The processing of APP and the pathogenic features of especially Aβ oligomers have been analyzed in detail. Remarkably, there is accumulating evidence from cell biological and structural studies suggesting that APP and its mammalian homologs, the amyloid precursor-like proteins (APLP1 and APLP2), participate under physiological conditions via trans-cellular dimerization in synaptogenesis. This offers the possibility that loss of synapses in AD might be partially explained by dysfunction of APP/APLPs cell adhesion properties. In this review, structural characteristics of APP trans-cellular interaction will be placed critically in context with its putative physiological functions focusing on cell adhesion and synaptogenesis

    Acute mountain sickness.

    Get PDF
    Acute mountain sickness (AMS) is a clinical syndrome occurring in otherwise healthy normal individuals who ascend rapidly to high altitude. Symptoms develop over a period ofa few hours or days. The usual symptoms include headache, anorexia, nausea, vomiting, lethargy, unsteadiness of gait, undue dyspnoea on moderate exertion and interrupted sleep. AMS is unrelated to physical fitness, sex or age except that young children over two years of age are unduly susceptible. One of the striking features ofAMS is the wide variation in individual susceptibility which is to some extent consistent. Some subjects never experience symptoms at any altitude while others have repeated attacks on ascending to quite modest altitudes. Rapid ascent to altitudes of 2500 to 3000m will produce symptoms in some subjects while after ascent over 23 days to 5000m most subjects will be affected, some to a marked degree. In general, the more rapid the ascent, the higher the altitude reached and the greater the physical exertion involved, the more severe AMS will be. Ifthe subjects stay at the altitude reached there is a tendency for acclimatization to occur and symptoms to remit over 1-7 days

    Mutation p.R356Q in the Collybistin Phosphoinositide Binding Site Is Associated With Mild Intellectual Disability

    Get PDF
    The recruitment of inhibitory GABAA receptors to neuronal synapses requires a complex interplay between receptors, neuroligins, the scaffolding protein gephyrin and the GDP-GTP exchange factor collybistin (CB). Collybistin is regulated by protein-protein interactions at the N-terminal SH3 domain, which can bind neuroligins 2/4 and the GABAAR a2 subunit. Collybistin also harbors a RhoGEF domain which mediates interactions with gephyrin and catalyzes GDP-GTP exchange on Cdc42. Lastly, collybistin has a pleckstrin homology (PH) domain, which binds phosphoinositides, such as phosphatidylinositol 3-phosphate (PI3P/PtdIns3P) and phosphatidylinositol 4-monophosphate (PI4P/PtdIns4P). PI3P located in early/sorting endosomes has recently been shown to regulate the postsynaptic clustering of gephyrin and GABAA receptors and consequently the strength of inhibitory synapses in cultured hippocampal neurons. This process is disrupted by mutations in the collybistin gene (ARHGEF9), which cause X-linked intellectual disability (XLID) by a variety of mechanisms converging on disrupted gephyrin and GABAA receptor clustering at central synapses. Here we report a novel missense mutation (chrX:62875607C>T, p.R356Q) in ARHGEF9 that affects one of the two paired arginine residues in the PH domain that were predicted to be vital for binding phosphoinositides. Functional assays revealed that recombinant collybistin CB3SH3-R356Q was deficient in PI3P binding and was not able to translocate EGFP-gephyrin to submembrane microaggregates in an in vitro clustering assay. Expression of the PI3P-binding mutants CB3SH3-R356Q and CB3SH3-R356N/R357N in cultured hippocampal neurones revealed that the mutant proteins did not accumulate at inhibitory synapses, but instead resulted in a clear decrease in the overall number of synaptic gephyrin clusters compared to controls. Molecular dynamics simulations suggest that the p.R356Q substitution influences PI3P binding by altering the range of structural conformations adopted by collybistin. Taken together, these results suggest that the p.R356Q mutation in ARHGEF9 is the underlying cause of XLID in the probands, disrupting gephyrin clustering at inhibitory GABAergic synapses via loss of collybistin PH domain phosphoinositide binding

    Molekulare Grundlagen der Alzheimer Krankheit

    No full text
    Eröffnungskongress "Graduiertenkolleg Demenz", 18. März 2010, Alte Aula der Universität Heidelberg Prof. Dr. Stefan Kins, Technische Universität Kaiserslauter

    Fe65: A Scaffolding Protein of Actin Regulators

    No full text
    The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity
    corecore