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Understanding the molecular mechanisms underlying amyloid precursor protein family
(APP/APP-like proteins, APLP) function in the nervous system can be achieved by
studying the APP/APLP interactome. In this review article, we focused on intracellular
APP interacting proteins that bind the YENPTY internalization motif located in the last
15 amino acids of the C-terminal region. These proteins, which include X11/Munc-
18-interacting proteins (Mints) and FE65/FE65Ls, represent APP cytosolic binding
partners exhibiting different neuronal functions. A comparison of FE65 and APP family
member mutant mice revealed a shared function for APP/FE65 protein family members
in neurogenesis and neuronal positioning. Accumulating evidence also supports a
role for membrane-associated APP/APLP proteins in synapse formation and function.
Therefore, it is tempting to speculate that APP/APLP C-terminal interacting proteins
transmit APP/APLP-dependent signals at the synapse. Herein, we compare our current
knowledge of the synaptic phenotypes of APP/APLP mutant mice with those of mice
lacking different APP/APLP interaction partners and discuss the possible downstream
effects of APP-dependent FE65/FE65L or X11/Mint signaling on synaptic vesicle release,
synaptic morphology and function. Given that the role of X11/Mint proteins at the
synapse is well-established, we propose a model highlighting the role of FE65 protein
family members for transduction of APP/APLP physiological function at the synapse.
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INTRODUCTION

The amyloid precursor protein (APP) can be processed to generate the amyloid β (Aβ) peptides,
which aggregate to form senile plaques, one of the major pathological hallmarks found in
Alzheimer’s disease (AD; Masters and Selkoe, 2012). APP is a ubiquitously expressed type I
transmembrane protein with a large ectodomain, a single membrane spanning domain, and a short
cytoplasmic tail. The ectodomain comprises two highly conserved E1 and E2 domains, involved in
metal (copper and zinc) and heparin binding (Baumkötter et al., 2012; Müller and Zheng, 2012).

APP has important physiological functions at the synapse (Zheng and Koo, 2011). Aged mice
deficient in APP show impairments in behavior (Müller et al., 1994; Phinney et al., 1999; Ring et al.,
2007), long-term potentiation (LTP; Seabrook et al., 1999; Ring et al., 2007), dendritic branching
and synaptic density (Zheng et al., 1995; Dawson et al., 1999; Phinney et al., 1999; Seabrook et al.,
1999; Lee et al., 2010; Tyan et al., 2012; Weyer et al., 2014). No synaptic deficits are present in
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APP-like protein 2 (APLP2) knockout (KO) mice (Midthune
et al., 2012; Weyer et al., 2014). Yet mice doubly deficient
for APP and APLP2 or for APLP1 and APLP2 exhibit early
postnatal lethality and show deficits in neuromuscular junction
(NMJ) formation, including incorrect apposition of pre- and
postsynaptic sites (von Koch et al., 1997; Heber et al., 2000;Wang
et al., 2005; Klevanski et al., 2014). These data suggest genetic
redundancy of APP family members for synapse formation.

Interestingly, the introduction of either sAPPα (APPsα-KI) or
APP with a mutation in the intracellular domain (APPY682G)
onto an APLP2-deficient background produced a partial rescue
of the phenotypes presented in the doubly deficient mice
(Barbagallo et al., 2011; Weyer et al., 2011). In addition, it was
shown that learning deficits in Drosophila lacking APPL, the
only homolog of APP in the fruit fly, are partially rescued by
secreted sAPPL (788 amino acid soluble N-terminal fragment)
or a non-cleavable full-length APPL (Bourdet et al., 2015; Cassar
and Kretzschmar, 2016). These data indicate that APP function
depends on both the activity of secreted sAPP, likely functioning
as a ligand, and on full-length APP, possibly working as a
receptor or co-receptor. Interestingly, exogenous Adenovirus-
mediated expression of sAPPα in aged AD model transgenic
mice (APPswe/PS1∆E9) restored synaptic plasticity and partially
rescued spine density deficits (Fol et al., 2016). These data, along
with those from many other studies, suggest that sAPPα may
function as a neurotrophic factor (Meziane et al., 1998; Bour
et al., 2004; Taylor et al., 2008; Claasen et al., 2009; Weyer et al.,
2014; Hick et al., 2015; Kundu et al., 2016; Plummer et al., 2016).
Although many different extracellular binding partners of APP
are reported, including different heparin sulfate proteoglycans
(HSPG; Aydin et al., 2012; Reinhard et al., 2013), none of the
identified proteins have been reported to function as sAPP
receptors. In the case of full length APP, it was proposed that
APP might be involved in trans-synaptic signaling, similar to
other synaptic modulators such as Neuroligin, Neurexin and
LRRTMs (Siddiqui and Craig, 2011; Baumkötter et al., 2012).
Several studies provide experimental evidence consistent with
this notion. Dimerization of APP can occur in a trans-orientation
(Soba et al., 2005; Kaden et al., 2008; Wang Z. et al., 2009;
Baumkötter et al., 2012; Klevanski et al., 2014) and inactivation
of APP at either the pre- or postsynaptic sites of the NMJ
in APLP2 KO mice causes defects similar to the combined
germline deletions of APP and APLP2 (Wang Z. et al., 2009).
Moreover, expression of APP bearing an intact E1 domain
in human embryonic kidney cells co-cultured with primary
hippocampal neurons promotes the presynaptic differentiation
of contacting axons (Wang Z. et al., 2009; Baumkötter et al., 2014;
Stahl et al., 2014). Dendritic spine formation is also increased
by heterologous expression of APP in primary hippocampal
neurons (Lee et al., 2010). Conversely, a loss of endogenous APP
causes a decrease in spine density (Lee et al., 2010). Although the
molecular mechanisms are not yet fully understood, the current
knowledge clearly suggests an essential physiological function of
trans-interacting full length APP in synapse organization.

Despite the well-documented essential functions of
APP/APLPs at the synapse, there is little knowledge of the
molecular signals activated by APP/APLPs either functioning

as putative ligands or as cell surface-associated receptors. The
identification of receptor(s) responsible for sAPP-dependent
signalingmay shed light on themolecular mechanism underlying
sAPP function at the synapse. In contrast, studies of intracellular
APP-binding proteins have already provided some interesting
insights on the molecular mechanisms by which full-length
APP may transmit synaptic signals. Here, we summarize
current knowledge of the synaptic functions of APP-binding
proteins. Protein-based studies used to identify APP interactors
have yielded a long list of candidate proteins involved in
many different pathways. Aside from a few interesting reports
highlighting the putative interaction of APP with G-protein
mediated signaling (Milosch et al., 2014; Ramaker et al., 2016),
the proteins most commonly identified in these studies bind the
YENPTY APP internalization motif. This review is a discussion
of our knowledge of the synaptic role of YENPTY APP-binding
proteins.

APP/APLP BINDING PROTEINS AND
SYNAPTIC FUNCTION

Synapse formation and maintenance involves homo- and
heterotypic interactions of Synaptic Cell Adhesion Molecules
(SAM), including APP/APLP (Siddiqui and Craig, 2011),
extracellular matrix components, extracellular ligands such as
soluble APP fragments and other growth factors, as well
as their adjacent receptors (Deyts et al., 2016). Herein, we
present the signaling pathways involved in synapse formation,
synaptic plasticity and synaptic neurotransmission in which
APP-binding proteins participate, with a particular focus on the
signaling events in which APP intracellular YENPTY domain
binding proteins may play a role to alter synaptic function.
This includes their role in well-established signal transduction
pathways and their impact on cellular pathways, such as
endocytosis, that are known to participate in signaling at
the synapse (Fassio et al., 2016). The APP YENPTY domain
binding proteins discussed include the X11/Munc-18-interacting
proteins (Mints), FE65 proteins, Dab1, Numb/Numbl and
Gulp1/CED-6, all capable of binding APP and other receptors
through phosphotyrosine binding (PTB) domains (King et al.,
2004; Wolfe and Guénette, 2007; Hao et al., 2011).

Reelin Signaling
The large extracellular protein reelin is best known for its role in
neuronal migration in the developing cortex. Reelin interaction
with the lipoprotein receptors apolipoprotein E receptor 2
(ApoER2) and very low-density lipoprotein receptor (VLDLR)
initiates a signaling cascade through tyrosine phosphorylation of
bound Dab1, an adaptor protein that is essential for neuronal
positioning in the developing mouse brain (D’Arcangelo et al.,
1999; Hiesberger et al., 1999; Howell et al., 1999; Trommsdorff
et al., 1999). Dendritic morphogenesis and excitatory synapse
formation are also regulated by the reelin/ApoER2/VLDLR
signaling pathway (Niu et al., 2004; Groc et al., 2007; Qiu
and Weeber, 2007). In the adult brain, reelin signaling through
ApoER2 alters the activity of postsynaptic glutamate receptors
in hippocampal slices, affecting LTP and synaptic plasticity
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(Weeber et al., 2002; Beffert et al., 2005). These events are also
dependent on tyrosine phosphorylation of the Dab1 adaptor
protein and the subsequent recruitment of Src family kinases to
phosphorylated Dab1, known as the canonical reelin signaling
pathway (reviewed in Bock and May, 2016). In the adult
hippocampus, Dab1 regulates synaptic plasticity (Trotter et al.,
2013). The adult forebrain specific and excitatory neuron specific
conditional Dab1 KO mice, used to demonstrate this role for
Dab1, display deficits in associative (fear conditioning) and
spatial learning, while demonstrating no other developmental
abnormalities previously associated with loss of this protein
(Trotter et al., 2013). However, spine area measurements of
hippocampal CA1 apical dendrites were reduced in these
conditional KO mice. Furthermore, impairments in both
hippocampal LTP and reelin-induced LTP were observed and
these were associated with deficits in the sustained activation
of ERK2 following synaptic potentiation (Trotter et al., 2013).
Thus, Dab1-mediated reelin signaling is important for synaptic
plasticity.

Several lines of evidence support a functional interaction
between APP and reelin signaling (Hoe et al., 2006, 2009;
Pramatarova et al., 2008; Rice et al., 2013; Divekar et al., 2014).
Despite, the identification of Dab1 as a cytosolic binding protein
for APP (Homayouni et al., 1999), and evidence for a genetic
interaction between APP and Dab1 (Pramatarova et al., 2008),
there is no evidence supporting a role for APP binding to
Dab1 in the transmission of an APP-dependent reelin signal.
However, the increase in APP binding to ApoER2 and the post-
synaptic density (PSD)-95 protein in primary cortical neurons
treated with reelin suggests that APP may participate in reelin
signaling as a co-receptor (Divekar et al., 2014). Given that
ApoER2 association with itself is increased by reelin treatment
and because receptor clustering is a known mechanism for
activation of intracellular signaling cascades for other receptors
such as EGFR, Trk and Ephrin, the reelin-dependent increase
in APP binding to ApoER2 may play a role in reelin synaptic
signaling (Divekar et al., 2014). Dab1 binding to both APP and
ApoER2 may modulate downstream signals. In addition, FE65,
which also binds the NPXY recognition motif in ApoER2, may
compete with Dab1 in this cellular context, adding another level
of complexity to the regulation of this signaling cascade (Hoe
et al., 2006).

Notch Signaling
The canonical Notch signaling pathway involves γ-secretase
cleavage of Notch to produce the Notch intracellular domain
(NICD) fragment, which is transcriptionally active. Notch
signaling is regarded as a developmental signaling pathway
for regulating stem cell maintenance and differentiation (Hori
et al., 2013). It also plays a role in neurite outgrowth, dendritic
arborization in immature neurons and synaptic plasticity in
the adult brain (reviewed by Ables et al., 2011; Giniger, 2012).
In mature pyramidal neurons, Notch signaling plays a role in
regulating filopodia and spine densities (Dahlhaus et al., 2008;
Alberi et al., 2011). Synaptic activity leads to an Arc-dependent
increase in Notch and NICD levels (Alberi et al., 2011).
Furthermore, downregulation of Notch in the hippocampus

leads to impaired LTP and enhanced long-term depression (LTD;
Wang Y. et al., 2004; Alberi et al., 2011), suggesting a role for
Notch signaling in synaptic plasticity. Spatial learning deficits
in the Morris Water Maze (MWM) and memory deficits in the
Y-maze were also reported for mice in which Notch is knocked
out in mature neurons (Alberi et al., 2011). Collectively, these
data suggest that Notch signaling plays a role in hippocampal
synaptic function.

Notch signaling is highly regulated, with the outcome being
partly dependent on crosstalk with other signaling pathways
and the type of cell receiving the Notch activation signal.
One example of this crosstalk occurs between the Notch and
reelin signaling pathways, with stabilization of NICD resulting
from reelin-Dab1 signaling (Hashimoto-Torii et al., 2008).
Moreover, NICD overexpression is able to rescue the neuronal
migration phenotype of mice lacking reelin (Hashimoto-Torii
et al., 2008). This seems to be due to the effect of Notch
signaling on the morphology adopted by neural precursor cells
to facilitate cellular migration. Whether crosstalk between Notch
and reelin signaling plays a role in synaptic plasticity is presently
unclear.

Evidence for interaction between Notch and APP signaling
pathways also exists. Several studies have reported a physical
interaction between APP and Notch (Fassa et al., 2005;
Fischer et al., 2005; Oh et al., 2005, 2010; Chen et al.,
2006). The YENPTY domain of Notch as well as APP
interact with Numb and Numb-like (Numbl; Roncarati et al.,
2002). Numb is an endocytic accessory protein that regulates
clathrin-mediated endocytosis of its cargo proteins (reviewed
in Yap and Winckler, 2015) and the absence of Numb and
Numbl reduces Notch endocytosis producing higher levels
of Notch and Notch signaling. Numb was identified in
Drosophila as a Notch binding protein that regulates cell fate
determination through inhibition of Notch signaling (Gulino
et al., 2010). However, the consequence of altering Numb levels
differs between vertebrates and Drosophila, as it’s absence in
vertebrates produces morphogenesis defects rather than the
predicted increase in neurogenesis resulting from increased
Notch signaling (Kuo et al., 2006; Rasin et al., 2007). In the
absence of Numb and Numbl, adherens junctions are lost
in radial glial cells due to abnormal cadherin localization.
This alters cell polarity, producing detachment and ectopic
localization of radial glial cells in the developing cortex (Rasin
et al., 2007). Thus, Numb mediated trafficking of N-cadherin
in the endocytic pathway participates in the maintenance of
adherens junctions. Numb, which is also expressed in the
adult mammalian cortex, hippocampal pyramidal cell layer and
cerebellum (Stump et al., 2002), may participate in the regulation
of the endocytic trafficking of its cargo proteins at the synapse.
In support of this possibility, Numb has recently been shown to
participate in mGlu1mediated LTD in Purkinje cells (Zhou et al.,
2015).

Numb/Numbl binding to the APP intracellular domain,
AICD, alters nuclear signaling by repressing Notch activity
(Roncarati et al., 2002). Further evidence supporting crosstalk
between APP and Notch signaling comes from promoter-
reporter activation experiments showing that AICD in the
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presence of FE65 can trans-activate Hes-1, a Notch1 target gene,
while NICD can trans-activate KAI-1, a putative AICD target
gene, in HEK293 cells (Fischer et al., 2005). Interestingly, NICD
trans-activation of the Hes-1 promoter can also be enhanced
by FE65 expression (Fischer et al., 2005). However, opposing
effects of APP on Notch signaling were reported for different
cell types, indicating that the APP/Notch signaling crosstalk
is context dependent (Oh et al., 2010). This may be due to
cell-type dependent splicing of Numb, since alternatively spliced
isoforms of Numb differentially affect APP internalization into
the endocytic pathway (Kyriazis et al., 2008) and thus AICD
generation. It may also be due to the cellular complement of
adaptor proteins shared by Notch and APP, such as Numb
and FE65, as competition of these adaptor proteins for APP or
Notch/NICD may alter downstream signals. Furthermore, APP
binding to Notch may modulate Notch signaling strength by
preventing Notch receptor ligand interactions (Roncarati et al.,
2002; Oh et al., 2005; Chen et al., 2006). Further studies are
needed to assess whether crosstalk between Notch and APP
signaling plays a role in synaptic structure and/or plasticity.

The association of FE65 proteins with receptors such as
ApoER2 and Notch/NICD is shown in Figure 1 as a possible
mechanism by which FE65 may function at the synapse.

Adhesion Proteins
Adhesion proteins that form complexes with APP, such as
N-cadherin and calsyntenin/alcadeins, are implicated in synaptic
contact formation and synaptic plasticity (Tang et al., 1998;
Togashi et al., 2002; Arikkath and Reichardt, 2008; Pettem et al.,
2013; Ster et al., 2014).

The classical cadherins participate in cell adhesion and
communicate with their intracellular binding partners, the
catenins, to link adhesion to intracellular pathways. The
cadherin/catenin complex localizes to synapses where it regulates
activity dependent spine remodeling (Arikkath and Reichardt,
2008; Bian et al., 2015). Although co-immunoprecipitation
experiments demonstrate N-cadherin binding to APP (Asada-
Utsugi et al., 2011), a role for N-cadherin/APP interactions in
cadherin-modulated synaptic events has not been reported.
However, N-cadherin binds the APP YENPTY binding
protein, Numb, which plays a role in mGlu1 mediated LTD
in Purkinje cells (Zhou et al., 2015). Thus, the ratio of
APP-Numb and N-cadherin-Numb interactions may alter
synaptic transmission.

In addition to classical adhesion molecules, there are a
number of synaptic adhesion complexes that induce synaptic
differentiation, a classic example is presynaptic neurexin
binding to postsynaptic neuroligin. The cadherin related protein
family member, Calsyntenin-3/Alcadein β, which is highly
expressed in interneurons, forms a functional complex with
α-neurexin that promotes calsyntenin-3 mediated presynaptic
differentiation of inhibitory synapses (Pettem et al., 2013; Um
et al., 2014). Calsyntenin-1 and -2 do not share this effect
(Um et al., 2014). However, the observation that knockdown
of all three calsyntenin proteins is necessary for decreased
inhibitory synaptic transmission in both cultured hippocampal
neurons and layer II/III somatosensory cortical neurons

in situ suggests that all three family members redundantly
regulate inhibitory synapse formation and function (Um et al.,
2014).

Calsyntenin-1/Alcadein α forms a ternary complex with
APP and the APP YENPTY binding protein, X11L. The
formation of this ternary complex suppresses secretase cleavage
of both APP (Araki et al., 2003) and Calsyntenin 1/Alcadein
α (Araki et al., 2004). Furthermore, the γ-secretase cleavage
product of Alcadein α, AlcαICD, competes with APP for
FE65 binding and FE65 stabilizes AlcαIACD, similar to
its stabilization of AICD (Kimberly et al., 2001; Araki
et al., 2004). This competition may lead to regulation of
AICD-mediated signaling. Although, the impact of Calsyntenin-
1/Alcadein α cleavage on synaptic function is unknown its
putative binding to FE65 at the synapse is highlighted in
Figure 1.

Given that APP/APLP trans-dimerization is implicated in
establishing synaptic contacts (Soba et al., 2005; Wang Z. et al.,
2009; Prox et al., 2013; Klevanski et al., 2014), while factors
that increase APP processing such as shedding (Stahl et al.,
2014) or activity-dependent Aβ generation may be important for
synaptic remodeling, a better understanding of the integration
of Notch and reelin signaling on APP processing, signaling and
metabolism at the synapse and the role of cross-talk between APP
and other synaptic adhesion molecules seems warranted, as these
may contribute to synaptic plasticity.

Gulp1 and Endocytosis
Gulp1/CED-6, a YENPTY APP-binding protein, is a neuronal
protein found in synaptosome-enriched fractions of rat brain,
where it co-localizes with clathrin-coated vesicles (Martins-Silva
et al., 2006). Gulp is involved in trafficking in the endocytic
pathway enhancing APP processing and Aβ generation when
overexpressed (Kiss et al., 2006; Hao et al., 2011). Furthermore,
Gulp associates with and positively regulates ADP-ribosylation
factor 6 (Arf6; Ma et al., 2007), a small GTPase that regulates
clathrin and caveolin-independent endocytic trafficking of
BACE1 in the somatodendritic compartment of neurons, where
BACE1 encounters APP (Ma et al., 2007; Sannerud et al., 2011).
Thus, Gulp/APP interactions might regulate synaptic levels of
APP and its proteolytic products by regulating APP intracellular
trafficking at the synapse.

Regulation of APP Intracellular Complexes
through Phosphorylation
APP-dependent modulation of synaptic structure and
function may occur through alternative splicing of APP or
phosphorylation of the APP C-terminus, thereby altering
interaction of APP/APLP with their binding proteins (Kyriazis
et al., 2008; Tamayev et al., 2009; Dunning et al., 2016).
Alternative splicing of APP and its homologs is complex,
but detailed investigations in the context of the putative
physiological functions of APP are lacking (Pandey et al.,
2016). The APP intracellular tail encompasses three Tyr
and five Ser/Thr putative phosphorylation sites, of which
two of the Tyr residues (Tyr682 and Tyr687) and three of
the Ser/Thr sites (Thr654, 668 and Ser655) can exist in a
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FIGURE 1 | Schematic overview of postulated FE65 protein family function at the synapse. Reported interaction partners for the FE65 protein family are
displayed at different synaptic sites, such as the active zone and the PSD. However, these interactions may also take place in other subsynaptic compartments. The
individual FE65-interacting proteins were sorted into different functional units: regulation of Ca2+-homeostasis (gray), actin remodeling (yellow), vesicle-associated
proteins involved in neurotransmitter release (green), cell adhesion (dark blue) and other surface receptor proteins (light blue). The FE65 binding receptors in bold are
those implicated in signal transduction pathways known to alter synaptic function. The PSD, active zone, actin cytoskeleton and neurotransmitter receptors are
highlighted in different colors. RYR, Ryanodine receptor; SERCA 2, sarcoplasmatic/endoplasmatic reticulum calcium ATPase 2; Arf6, ADP-ribosylation factor 6;
Rac1, Ras-related C3 botulinum toxin substrate 1; VGLUT1, vesicular glutamate transporter 1; SV2A, synaptic vesicle glycoprotein 2A; LRP1, low-density lipoprotein
receptor-related protein; ApoER2, apolipoprotein E receptor 2; VLDLR, very low-density lipoprotein receptor; APP, amyloid precursor protein; APLPs, APP-like
proteins (1 and 2); P2X2, P2X purinergic receptor 2; NCAM2, neural cell adhesion molecule 2; L1CAM, neural cell adhesion molecule L1; PSD, post-synaptic
density; PTB1 and PTB2, phosphotyrosine-binding domain 1 and 2; WW, protein domain containing two tryptophans.

phosphorylated state. These phosphorylation sites are docking
sites for different adaptor proteins and at least for some of
these, Tyr682 and Thr668, an influence on the binding of Shc
and Grb2 or FE65, respectively, with full-length APP, and/or
the α- and β-secretase derived APP C-terminal fragments has

been documented (for review, see Schettini et al., 2010). The
AICD interactome was also found to differ depending on
phosphorylation of Tyr682 and Thr668 (Tamayev et al., 2009).
Likely, the physiological relevance of the different sites can only
be understood in specific signaling contexts and should include
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analysis of both APP phosphorylation and phosphorylation of
their interacting proteins. More research will be required for a
better understanding of these networks in the context of synapse
formation and function.

The studies described above provide information on
how APP-binding adaptor proteins contribute to signaling
pathways implicated in synaptic function. Interestingly, X11 and
FE65 proteins modulate signaling in these pathways. The
remainder of this review focuses on the X11 and FE65 proteins
and discusses their significance for synaptic function in light
of recent KO studies. The synaptic phenotypes identified
offer specific contexts in which to study the interplay between
APP-binding PTB adaptor proteins and the additional ligands
they bind on synaptic signaling.

X11/MINT MUTANT MICE

The APP-interacting proteins, X11, X11L and X11L2, bind to
the YENPTY motif in the cytoplasmic region of APP (Borg et al.,
1996; McLoughlin et al., 1999; Tanahashi and Tabira, 1999;
Tomita et al., 1999). Interaction of X11 and X11L with Munc-18
(Munc-18-interacting protein (Mint)), a protein mediating
membrane-vesicle fusion, was also reported (Okamoto and
Südhof, 1997). Hence, multiple nomenclatures exist for this
protein family: X11/X11α/Mint1, X11L/X11β/Mint2, and
X11L2/X11γ/Mint3. In this review article, we refer to these
proteins by their original nomenclature—X11, X11L and X11L2
(Duclos et al., 1993).

All three X11 proteins contain a conserved C-terminus, which
consists of a phosphotyrosine-interaction/binding (PTB) and
two PDZ (PSD95,Drosophila disc large tumor suppressor (Dlg1),
and zonula occludens-1 protein (zo-1)) domains, mediating
different types of protein–protein interactions. The X11 proteins
diverge in the N-terminus, where X11 and X11L display
an additional Munc-18 interacting domain and where only
X11 bears a CASK-interacting domain (Okamoto and Südhof,
1997, 1998; Butz et al., 1998; Borg et al., 1999). Further,
X11 and/or X11L associate with different interaction partners,
including Kalirin-7 and XB51/NECAB3 (Lee et al., 2000; Jones
et al., 2014). X11L is exclusively expressed in neurons, whereas
X11 is found predominantly in the brain, but is also expressed
in the pancreas, testis and paranephros (Motodate et al., 2016).
Notably, some neurons, such as Purkinje cells showed only
expression of X11, whereas X11L2 was found ubiquitously
expressed, with substantial amounts in the brain (Motodate et al.,
2016). The X11 family proteins regulate intracellular trafficking
of APP as well as other NPXY motif containing transmembrane
proteins (Araki et al., 2003; Saito et al., 2008, 2011; Gross
et al., 2013; Sullivan et al., 2014) and affect APP processing,
including generation of the Aβ peptide (Borg et al., 1998;
Tanahashi and Tabira, 1999; Tomita et al., 1999; Shrivastava-
Ranjan et al., 2008; Caster and Kahn, 2013). Interestingly,
X11L2 and to a lesser extent X11L are distributed between the
cytosolic and nuclear fractions, whereas X11 is recovered mostly
in the cytosolic and membrane fractions. Thus, X11L2 might
function as a transcriptional co-activator (Sumioka et al.,
2008).

In a recent study, it was shown that all X11 family proteins are
involved in activity dependent regulation of surface APP levels
(Sullivan et al., 2014). Neuronal activity was associated with APP
endocytosis followed by increased APP levels at the surface. This
is highly interesting, as elevated APP cell surface levels were
shown to increase APP synaptogenic activity (Stahl et al., 2014).
In addition, X11 overexpression increases excitatory synaptic
activity and activity dependent APP endocytic trafficking and Aβ

generation (Sullivan et al., 2014). These data are consistent with
the hypothesis, that X11/APP interactions may regulate activity-
dependent synaptic remodeling.

X11 loss of function analyses revealed movement
impairments and a decrease in GABAergic neurotransmission
in KO mice (Ho et al., 2003, 2006). Further, X11-KO mice
showed alterations in dopaminergic neurotransmission (Mori
et al., 2002). X11L and X11L2 single KO mice revealed no
obvious deficits, but X11L is functionally redundant for X11,
as 80% of X11/X11L DKO mice die early after birth and
the surviving mice exhibit increased growth and aggravated
motor impairments (Ho et al., 2003, 2006; Sano et al., 2009).
Furthermore, mouse X11/X11L mutants exhibited impairments
in presynaptic neurotransmitter release, as indicated by lowered
basal neurotransmission and reduced miniature excitatory
post-synaptic current (mEPSC) frequency (Ho et al., 2006). As
paired pulse facilitation was decreased and synaptic density was
unchanged, these data can be explained by a decrease in synaptic
vesicle release probability in X11/X11L DKO neurons (Ho et al.,
2006). These data argue that the impaired synaptic vesicle release
might be due to loss of interaction between X11/X11L and
Munc-18. Consistently, the additional loss of X11L2, a family
member lacking the Munc-18 binding site, did not aggravate
the synaptic phenotype of X11/X11L DKO mice (Ho et al.,
2006).

Interestingly, X11 single KO mice exhibit an increased
paired-pulse depression at inhibitory synapses (Ho et al.,
2003), consistent with an increased release probability, whereas
analysis of X11/X11L/X11L2 KO neurons suggests a decreased
release probability at excitatory synapses. This observation
suggests that X11 may play a more specialized function at
inhibitory synapses, whereas at excitatory synapses X11 and
X11L might exhibit overlapping functions. Consistently, X11 is
highly expressed in interneurons (Ho et al., 2003). However,
other compensatory mechanisms may occur, for example,
X11/X11L/X11L2-deleted neurons show increased levels of
FE65, FE65L1 and FE65L2 proteins suggesting that X11 and
FE65 proteins are functionally related (Ho et al., 2006).
As X11 and FE65 proteins both contain a PTB domain,
mediating binding to APP, it is conceivable that X11 and
FE65 proteins are partially redundant for an APP-mediated
function at the synapse (Ho et al., 2006). However, in a
recent study no alterations in paired pulse facilitation were
observed in FE65/FE65L1 DKO mice (Strecker et al., 2016).
Alternatively, the functional overlap of X11 and FE65 may
occur in dendritic spines. Levels of the AMPA-type glutamate
receptor, GluR1, are increased in cortical neurons with acute
deletion of X11 protein family members and the postsynaptic
localization of the AMPA-type receptor GLR1 of Caenorhabditis
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elegans is impaired in Lin-10/X11 mutant interneurons (Rongo
et al., 1998). Furthermore, X11 localizes to the mobile fraction
of the PSD in excitatory cortical neurons where it interacts
with Kalirin-7, a guanine-nucleotide exchange factor (GEF)
that regulates Rac1 localization and function (Jones et al.,
2014).

FE65/FE65L1 MUTANT MICE

The FE65 protein family, consisting in mammals of FE65,
FE65-like 1 (FE65L1) and FE65-like 2 (FE65L2), are
scaffolding/adaptor proteins able to form multi-molecular
complexes that function in many cellular processes, such as
calcium homeostasis (Nensa et al., 2014), actin remodeling
and nuclear signaling (recently reviewed in Chow et al., 2015).
All three FE65 proteins share conserved protein-protein
interaction/binding motifs, namely the N-terminal WW-domain
and the two C-terminal phosphotyrosine-binding domains
1 and 2 (PTB1, PTB2; Meiyappan et al., 2007; Radzimanowski
et al., 2008a,b). The complexity of the FE65 protein family
is further increased by the existence of several splice variants
(p90FE65, p60FE65), polymorphisms within FE65 and cleavage
products driven by proteases (p65FE65, which has an up
to 40-fold higher affinity for APP than p97FE65; Hu et al.,
1999, 2002, 2005; Domingues et al., 2011; Saeki et al., 2011;
Golanska et al., 2013; Loosse et al., 2016). However, little is
known about the specific localization and functions of these
FE65/FE65L1/FE65L2 isoforms. Future experiments with
specific antibodies against the different FE65 family members as
well as their individual splice variants and processing products,
might help clarify these questions.

FE65 and its family members interact with the intracellular
domains of APP/APLPs (Fiore et al., 1995; Guénette et al.,
1996; Duilio et al., 1998). As FE65 is predominantly expressed
in the brain, similar to APP695, it has been studied more
extensively than the more widely distributed FE65L1 and FE65L2
(Kesavapany et al., 2002; Guo et al., 2012). However, during
mouse brain development FE65 expression clearly differs from
APP. Whereas APP is upregulated during development until the
first postnatal week, FE65 levels begin to decline after embryonic
day 15 and increase again progressively from post-partum
day 10 to adulthood (Sandbrink et al., 1997; Kesavapany
et al., 2002). Interestingly, histological examination of FE65 or
FE65L1 KO mouse brains revealed no abnormalities, while mice
lacking both FE65 and FE65L1 resemble the APP/APLP1/APLP2
triple-KO (TKO) mouse phenotypes, exhibiting among other
phenotypes, ectopic neurons and axonal pathfinding defects
(Herms et al., 2004; Guénette et al., 2006). These data suggest that
FE65 proteins mediate APP protein function in the developing
brain possibly through transmission of an APP-dependent signal
necessary for brain development. An alternative possibility is that
loss of the FE65 proteins leads to APP-dependent sequestration
of PTB-binding adaptor proteins essential for brain development.

The FE65 interaction with Mena/Vasp proteins, regulators of
actin dynamics, is of interest because Mena KOmice have axonal
pathfinding defects and improper positioning of neurons in the
developing brain that bear resemblance to phenotypes observed

in FE65/FE65L1 DKO and the APP/APLP1/APLP2 TKO mice
(Lanier et al., 1999; Goh et al., 2002; Herms et al., 2004; Guénette
et al., 2006). Recovery of a tripartite complex of FE65, Mena
and APP and the co-localization of these proteins in growth
cones and synapses suggest a neuronal function for this complex
(Sabo et al., 2003; Ikin et al., 2007). Adenovirus-mediated
expression of interaction-deficient FE65, bearing mutations that
either abrogates PTB2 domain interactions (APP) or WW
domain interactions (Mena/Vasp), altered axon branching (Ikin
et al., 2007) suggesting a role for such complexes in neurite
outgrowth. Functional analyses to determine whether APP-
FE65-Mena/Vasp or FE65/Mena/Vasp complexes are present at
the synapse would be a first step towards addressing a putative
role for this complex in synaptic function.

Our recent detailed in vivo study examining FE65 protein
family function using learning behavior analyses,
immunohistological staining and electrophysiological
measurements of different FE65/FE65L1 protein family KOmice
provides further insights into the role of FE65 protein family
members in the central and peripheral nervous system (CNS,
PNS) that again show phenotypes similar to APP protein family
KO mice (Strecker et al., 2016). Impairments in the maintenance
of LTP in the Schaffer collateral pathway of FE65/FE65L1 DKO
mice suggest that these proteins play a role in synaptic plasticity
(Strecker et al., 2016). Although the FE65 single KO mice
showed a trend towards decreased post-tetanic potentiation,
maintenance of LTP was not significantly different from WT
and no deficits were observed in FE65L1KO mice. A previous
study of the isoform specific p97FE65 KO mice (lacking the
longest FE65 isoform, p97, but simultaneously overexpressing
six-times more of the shorter isoform, p60) reported early-phase
LTP dysfunction (Wang Y. et al., 2009). Collectively these data
support overlapping functions for FE65 and FE65L1 in synaptic
neurotransmission. Interestingly, comparable potentiation rates
have been observed in LTP measurements of acute hippocampal
slices of APP∆CT15-DM mice (APP lacking the last 15 amino
acids KI—APLP2 KO mice; Klevanski et al., 2015) pointing
towards a shared function for FE65 and APP at the synapse.
A role for FE65 proteins at the synapse is further supported
by FE65 interaction with SV2, a synaptic vesicle protein,
as well as sarcoplasmatic/endoplasmatic reticulum calcium
ATPase (SERCA) and ryanodine receptor (RYR; Nensa et al.,
2014), involved in calcium release/homeostasis in synapses
under normal physiological conditions (reviewed in Mendoza-
Torreblanca et al., 2013; Del Prete et al., 2014; Elaïb et al., 2016).
Interestingly, dysregulation of calcium homeostasis is discussed
in pathological conditions of AD (reviewed in Small, 2009),
which may involve dysregulation of this aspect of FE65 protein
function.

p97FE65 KO mice displayed deficits in cognitive behavior in
non-spatial learning tasks and showed significant impairments
in hidden platform and reversal learning in the MWM spatial
learning test (Wang B. et al., 2004; Wang Y. et al., 2009).
However, no memory deficits were observed for these mice.
In contrast, memory deficits were observed in the MWM
test for the FE65 KO (lacking both p60 and p97 isoforms)
and FE65L1 KO mice in our study (Strecker et al., 2016).
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Confounding behaviors for locomotion analyses and possible
loss of vision in FE65/FE65L1 DKO mice (Suh et al., 2015;
Strecker et al., 2016) made it impossible to interpret the MWM
spatial learning deficits observed for FE65/FE65L1 DKOmice.

Additional insights into the molecular mechanisms by which
loss of the FE65 proteins results in the observed phenotypes
comes from our knowledge of the function of their binding
partners (Chow et al., 2015). The functions in which FE65 protein
family members may participate include effects on actin
cytoskeleton dynamics (Ermekova et al., 1997; Perkinton et al.,
2004; Ward et al., 2010), Ca2+ homeostasis (Nensa et al., 2014),
APPmediated signaling (discussed inmore detail below), nuclear
signaling via Tip60 (Cao and Südhof, 2001) and the response to
DNA damage (Minopoli et al., 2012).

Early studies suggesting a role for FE65 in transcriptional
regulation came from the identification of the histone
acetyltransferase, Tip60 and the transcription factors,
CP2/LSF/LBP1 and SET, as FE65 PTB1 domain binding proteins
(Zambrano et al., 1998; Cao and Südhof, 2001; Telese et al., 2005).
Despite intensive studies addressing AICD/FE65-regulated gene
expression, there is a lack of consensus for most of the identified
target genes (Hébert et al., 2006; Waldron et al., 2008). For
a list of gene targets including those supported by promoter
binding studies see Pardossi-Piquard and Checler (2012). These
conflicting results may be due to the different experimental
systems studied and the possibility that FE65 transcriptional
regulation only occurs in specific physiological contexts. In
support of this possibility, a recent study showed that FE65 is
involved in epigenomic regulation of specific transcriptional
programs implicated in the response to DNA damage (Ryu et al.,
2015).

With respect to the role of FE65 proteins in synaptic
function, the small GTPase, ARF6, which influences endocytic
and membrane trafficking in neurons, is an intriguing
FE65 interactor that may form an APP-FE65-Arf6 tripartite
complex (Sannerud et al., 2011; Cheung et al., 2014; Tang
et al., 2015). FE65 preferentially binds to ARF6 in its inactive
GDP-bound form and stimulates the activation of ARF6
(Cheung et al., 2014). ARF6 is involved in synaptic function via
regulation of AMPA receptor trafficking and synaptic plasticity
during NMDA receptor-mediated LTP (Oku and Huganir,
2013). It also participates in NMDA-dependent LTD (Scholz
et al., 2010) and regulates the cycling and readily releasable pool
(RRP) of synaptic vesicles at the presynaptic site (Tagliatti et al.,
2016). A recent study points towards a bi-directional function for
ARF6 in spine formation and maintenance that is dependent on
neuronal maturity and activity (Kim et al., 2015). In immature
neurons expression of genes involved in cell motility and actin
cytoskeleton organization are up-regulated by ARF6, while in
mature neurons expression of genes important for neuronal
activity such as synaptic transmission are up-regulated by ARF6
(Kim et al., 2015). Furthermore, synaptic activity reverses these
effects indicating that ARF6 mediated signaling may play a
role in synaptic plasticity (Kim et al., 2015). Interestingly, the
interaction of FE65 and ARF6 influences ARF6 signaling to Rac1
(Cheung et al., 2014), which is implicated in neuronal outgrowth
and spine structural plasticity (Cheung et al., 2014; Kim et al.,
2015). In addition, Rac1 was previously reported to interact
with FE65 and regulates its expression (Wang et al., 2011). Both
Arf6 and Rac1 are included in Figure 1 as FE65 binding proteins
that may contribute to FE65 function at the synapse. Knockdown
of ARF6 also affects neuronal migration in the developing

TABLE 1 | Phenotypic comparison of X11 and FE65 protein family knockout (KO) mice to amyloid precursor protein (APP) mutants lacking the
X11/FE65 interaction domain.

Null or mutant genes FE65 KO FE65p97a FE65L1 KO FE65/FE65L1 DKO X11/X11L DKO APP∆CT/APLP2 DKOb

Locomotion Impaired1,2 n.d. Impaired1 Impaired1,2 Impaired3 Impaired4

Open field Unchanged1 Unchanged5 Unchanged1 Elevated activity1 n.d. Elevated activity4

Elevated plus maze Unchanged1 n.d. Unchanged1 Increased anxiety1 n.d. n.d.
Learning Impaired1 Slightly impaired5,6 Impaired1 Impaired1 n.d. Impaired4

Cortex organization Unchanged7 n.d. Unchanged 7 Cortical dysplasia7 n.d. n.d.
Spine density Mostly not affected1 n.d. Mostly not affected1 Mostly not affected1 Unchanged3 n.d.
LTP Unchanged1 n.d. Unchanged1 Impaired1 n.d. Impaired4

PTP Impaired1 Impaired6 Unchanged1 Impaired1 n.d. Impaired4

PPF Unchanged1 Unchanged6 - Unchanged 1 Increased3 Unchanged4

I/O curve Unchanged1 Unchanged6 - Unchanged1 Impaired3 Mostly unchanged4

mEPSC - n.d. - n.d. Reduced frequency3 Unchanged4

RRP - n.d. - n.d. Reduced3 Reduced4

NMJ area Reduced1 n.d. Reduced1 Reduced1 - Reduced4,8

NMJ apposition Impaired1 n.d. Impaired1 Impaired1 - Impaired4,8,9

NMJ fragmentation Increased1 n.d. Increased1 Increased1 - Increased4

Muscle cell n.d. Centralized nuclei2 n.d. n.d.
Lens morphology Unchanged2 n.d. Cataracts (adult)2 Degenerated (≥1 month)2 n.d. n.d.

Phenotypes from X11 or FE65 mutant mice exhibiting similar phenotypes as APP/APLP2 mutant mice, lacking the FE65 or X11 interaction site are highlighted in dark

gray. a Isoform specific FE65 KO, expressing higher levels of the p60 isoform, bAPP1CT knockin on an APP-like protein 2 (APLP2) KO background or APP1CT knockin

with familial Alzheimer’s disease (AD) mutations in the humanized Aβ domain on an APLP2 KO background (Li et al., 2010) or APPY682G knockin on an APLP2 KO

background (Barbagallo et al., 2011). cAbbreviations: LTP, Long-term potentiation; PTP, Post-tetanic potention; PPF, Paired pulse facilitation; mEPSC, miniature excitatory

post-synaptic current; RRP, readily releasable pool; NMJ, neuromuscular junction; n.d., not determined. References: 1Strecker et al., 2016; 2Suh et al., 2015; 3Ho et al.,

2006; 4Klevanski et al., 2015; 5Wang B. et al., 2004; 6Wang Y. et al., 2009; 7Guénette et al., 2006; 8Li et al., 2010; 9Barbagallo et al., 2011.
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cortex (Hara et al., 2016). Thus, the FE65/ARF6 interaction
and its effects on ARF6 signaling are consistent with many
of the phenotypes observed in FE65/FE65L1 DKO and
APP/APLP1/APLP2 TKO mouse brains. Further research
in this direction should help determine the contribution of the
FE65/ARF6 pathway to the phenotypic similarities observed
between FE65/FE65L1 DKO and APP/APLP1/APLP2 TKO
synaptic defects in the hippocampus.

FE65/FE65L1 KO and various APP KO mouse models share
common impairments in NMJ formation with reduced pre-
and postsynaptic areas and deficits in apposition of the pre-
and postsynapse (Li et al., 2010; Weyer et al., 2011; Klevanski
et al., 2014, 2015; Strecker et al., 2016). These are aggravated
in FE65/FE65L1 DKO compared to FE65 or FE65L1 KO
mice NMJs (Strecker et al., 2016), possibly leading to muscle
degeneration/denervation (Suh et al., 2015) and the locomotion
deficits and impairments in strength observed in these mice
(Strecker et al., 2016).

APP interaction with low-density lipoprotein receptor-
related protein 4 (LRP4), a component of the postsynaptic
LRP4/MUSK/Agrin complex, is important for Acetylcholine-
receptor patterning and stabilization at postsynaptic sites of the
NMJ (Choi et al., 2013). Given that FE65 interaction with the
intracellular domain of many lipoprotein receptors has been
demonstrated (Gotthardt et al., 2000; Hoe et al., 2006; Alvira-
Botero et al., 2010; Dumanis et al., 2012), the observation that
the LRP4 ectodomain is sufficient for pre- and post-synaptic
differentiation of the NMJ indicates that any contribution
FE65 may have to this pathway may be via its interaction with
APP in an APP/LRP4 tripartite complex (Gomez and Burden,
2011).

CONCLUDING REMARKS

To gain insights into the molecular mechanisms by which APP
functions at the synapse, we have re-examined the cytosolic APP
interactome literature. Taking the different interaction partners
into account, we highlighted some putative signaling pathways,
involving Reelin, Notch and cell adhesion proteins, in which
APP-interactors may participate to modulate synaptic function.
PTB-containing interactors that bind the YENPTY motif in the
APP-C terminus are themost prominently studied. Comparisons
of several APP mutant mouse models that either lack or bear
a mutation in the YENPTY motif, to X11 or FE65 KO mouse
models reveal a surprisingly high degree of similarity between
APP mutant mice and FE65 protein family KO mice (Table 1).
Therefore, we conclude, that Fe65 family proteins play a pivotal
role in APP function and have outlined possible cellular events in
which APP-FE65 signalingmay operate at the synapse (Figure 1).
In future it will be important to evaluate those putative pathways
and to investigate in more detail the regulation of APP-FE65
interactions at the synapse.
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