171 research outputs found

    Asymptotic Preserving Discontinuous Galerkin Methods for a Linear Boltzmann Semiconductor Model

    Full text link
    A key property of the linear Boltzmann semiconductor model is that as the collision frequency tends to infinity, the phase space density f=f(x,v,t)f = f(x,v,t) converges to an isotropic function M(v)ρ(x,t)M(v)\rho(x,t), called the drift-diffusion limit, where MM is a Maxwellian and the physical density ρ\rho satisfies a second-order parabolic PDE known as the drift-diffusion equation. Numerical approximations that mirror this property are said to be asymptotic preserving. In this paper we build two discontinuous Galerkin methods to the semiconductor model: one with the standard upwinding flux and the other with a ε\varepsilon-scaled Lax-Friedrichs flux, where 1/ε\varepsilon is the scale of the collision frequency. We show that these schemes are uniformly stable in ε\varepsilon and are asymptotic preserving. In particular, we discuss what properties the discrete Maxwellian must satisfy in order for the schemes to converge in ε\varepsilon to an accurate hh-approximation of the drift diffusion limit. Discrete versions of the drift-diffusion equation and error estimates in several norms with respect to ε\varepsilon and the spacial resolution are also included

    A map-based model predictive control approach for train operation

    Full text link
    Trains are a corner stone of public transport and play an important role in daily life. A challenging task in train operation is to avoid skidding and sliding during fast changes of traction conditions, which can, for example, occur due to changing weather conditions, crossings, tunnels or forest entries. The latter depends on local track conditions and can be recorded in a map together with other location-dependent information like speed limits and inclination. In this paper, a model predictive control (MPC) approach is developed. Thanks to the knowledge of future changes of traction conditions, the approach is able to avoid short-term skidding and sliding even under fast changes of traction conditions. In a first step, an optimal reference trajectory is determined by a multiple-shooting approach. In a second step, the reference trajectory is tracked by an MPC setup. The developed method is simulated along a track with fast-changing traction conditions for different scenarios, like changing weather conditions and unexpected delays. In all cases, skidding and sliding is avoided.Comment: 6 pages, 7 figures, accepted at ECC 202

    A Hierarchical Scheduling Model for Dynamic Soft-Realtime System

    Get PDF
    We present a new hierarchical approximation and scheduling approach for applications and tasks with multiple modes on a single processor. Our model allows for a temporal and spatial distribution of the feasibility problem for a variable set of tasks with non-deterministic and fluctuating costs at runtime. In case of overloads an optimal degradation strategy selects one of several application modes or even temporarily deactivates applications. Hence, transient and permanent bottlenecks can be overcome with an optimal system quality, which is dynamically decided. This paper gives the first comprehensive and complete overview of all aspects of our research, including a novel CBS concept to confine entire applications, an evaluation of our system by using a video-on-demand application, an outline for adding further resource dimension, and aspects of our protoype implementation based on RTSJ

    Transcostovertebral kyphoplasty of the mid and high thoracic spine

    Get PDF
    While Kyphoplasty is increasingly becoming a recognised minimally invasive treatment option for osteoporotic vertebral fractures and neoplastic vertebral collapse, the experience in the treatment of vertebrae of the mid (T5-8)- and high (T1-4) thoracic levels is limited. The slender pedicle morphology restricts the transpedicular approach at these levels, necessitating extrapedicular placement techniques. Fifty five vertebrae of 32 consecutive patients were treated with kyphoplasty at levels ranging from T2-T8 for vertebral fractures (27 patients) or osteolytic collapse (5 patients). All procedures were performed through the transcostovertebral approach under fluoroscopic guidance. The radioanatomical landmarks of this minimally invasive approach were consistently identified and strictly adhered to. One fracture required open instrumentation due to posterior column injury in addition to kyphoplasty. Identification of specific radioanatomical landmarks allowed precise tool introduction in all cases without intraspinal or paravertebral malplacement. Average operating time for patients with osteoporotic fractures was 30min per level (range 13-60min) and 52min per level (range 35-95min) in neoplastic cases. Biopsy yield in patients with known or suspected malignancies was 100%. Epidural cement leakage was detected in one patient with pedicular osteolysis. Perforation of the lateral vertebral cortex during balloon inflation occurred in another patient. Both intraoperative complications were without clinical significance. Kyphoplasty in mid- to -high thoracic levels is possible via the transcostovertebral route under fluoroscopic guidance. Strict adherence to a stepwise protocol of tool introduction following defined radioanatomical landmarks is mandatory for the safe completion of this minimally invasive techniqu

    Resource Footprints are Good Proxies of Environmental Damage

    Get PDF
    Environmental footprints are increasingly used to quantify and compare environmental impacts of for example products, technologies, households, or nations. This has resulted in a multitude of footprint indicators, ranging from relatively simple measures of resource use (water, energy, materials) to integrated measures of eventual damage (for example, extinction of species). Yet, the possible redundancies among these different footprints have not yet been quantified. This paper analyzes the relationships between two comprehensive damage footprints and four resource footprints associated with 976 products. The resource footprints accounted for >90% of the variation in the damage footprints. Human health damage was primarily associated with the energy footprint, via emissions resulting from fossil fuel combustion. Biodiversity damage was mainly related to the energy and land footprints, the latter being mainly determined by agriculture and forestry. Our results indicate that relatively simple resource footprints are highly representative of damage to human health and biodiversity

    Identifying predictive features of autism spectrum disorders in a clinical sample of adolescents and adults using machine learning

    Get PDF
    Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis

    Sparse-grid Discontinuous Galerkin Methods for the Vlasov-Poisson-Lenard-Bernstein Model

    Full text link
    Sparse-grid methods have recently gained interest in reducing the computational cost of solving high-dimensional kinetic equations. In this paper, we construct adaptive and hybrid sparse-grid methods for the Vlasov-Poisson-Lenard-Bernstein (VPLB) model. This model has applications to plasma physics and is simulated in two reduced geometries: a 0x3v space homogeneous geometry and a 1x3v slab geometry. We use the discontinuous Galerkin (DG) method as a base discretization due to its high-order accuracy and ability to preserve important structural properties of partial differential equations. We utilize a multiwavelet basis expansion to determine the sparse-grid basis and the adaptive mesh criteria. We analyze the proposed sparse-grid methods on a suite of three test problems by computing the savings afforded by sparse-grids in comparison to standard solutions of the DG method. The results are obtained using the adaptive sparse-grid discretization library ASGarD

    A Functionally Different Immune Phenotype in Cattle Is Associated With Higher Mastitis Incidence

    Get PDF
    A novel vaccine against bovine viral diarrhea (BVD) induced pathogenic antibody production in 5–10% of BVD-vaccinated cows. Transfer of these antibodies via colostrum caused Bovine neonatal pancytopenia (BNP) in calves, with a lethality rate of 90%. The exact immunological mechanisms behind the onset of BNP are not fully understood to date. To gain further insight into these mechanisms, we analyzed the immune proteome from alloreactive antibody producers (BNP cows) and non-responders. After in vitro stimulation of peripheral blood derived lymphocytes (PBL), we detected distinctly deviant expression levels of several master regulators of immune responses in BNP cells, pointing to a changed immune phenotype with severe dysregulation of immune response in BNP cows. Interestingly, we also found this response pattern in 22% of non-BVD-vaccinated cows, indicating a genetic predisposition of this immune deviant (ID) phenotype in cattle. We additionally analyzed the functional correlation of the ID phenotype with 10 health parameters and 6 diseases in a retrospective study over 38 months. The significantly increased prevalence of mastitis among ID cows emphasizes the clinical relevance of this deviant immune response and its potential impact on the ability to fight infections
    corecore