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ABSTRACT: Environmental footprints are increasingly used to quantify and
compare environmental impacts of for example products, technologies, households,
or nations. This has resulted in a multitude of footprint indicators, ranging from
relatively simple measures of resource use (water, energy, materials) to integrated
measures of eventual damage (for example, extinction of species). Yet, the possible
redundancies among these different footprints have not yet been quantified. This
paper analyzes the relationships between two comprehensive damage footprints and
four resource footprints associated with 976 products. The resource footprints
accounted for >90% of the variation in the damage footprints. Human health damage
was primarily associated with the energy footprint, via emissions resulting from fossil
fuel combustion. Biodiversity damage was mainly related to the energy and land footprints, the latter being mainly determined by
agriculture and forestry. Our results indicate that relatively simple resource footprints are highly representative of damage to
human health and biodiversity.

■ INTRODUCTION

Apart from welfare and increased longevity, our modern
industrialized society has brought unintended environmental
and social impacts, for example on biodiversity and human
health. As illustrated by the so-called DPSIR framework
(Driver, Pressure, State, Impact, and Response),1 human
needs (e.g., need for food) result in environmental pressures
(e.g., use of fertilizer) which change the state of the
environment (e.g., polluted surface water). This in turn results
in impacts (e.g., biodiversity decline) and eventually a societal
response to these impacts (e.g., reduced fertilizer use) (Figure
1). In line with this framework, biodiversity impacts are
assessed by integrated assessment studies, such as the
Millennium Ecosystem Assessment2 and the Global Biodiver-
sity Outlooks,3 which quantify the influence of human drivers
on species decline. Similarly, in the Global Burden of Disease
studies the damage to human health of a number of
(environmental) factors, such as fine particulate dust
concentrations, is assessed in terms of Disability Adjusted
Life Years.4

For purposes of environmental accountability and efficient
damage remediation, impacts on biodiversity or human health
can be allocated to specific products, technologies, cities, or
nations, resulting in so-called footprints. Different types of
footprints have been developed. Damage footprints approx-
imate the anthropogenic impact on human health and
ecosystems by encompassing as many relevant resource
extractions, substance emissions, and cause-effect pathways as
possible.5−8 The comprehensiveness of the damage footprints

comes, however, at a cost. Not only do damage footprint
calculations require large amounts of input data but also their
outcomes are associated with large uncertainties because of the
assumptions and simplifications made when quantifying
intricate environmental cause-effect chains.5 As an alternative
approach, the pressure part of the DPSIR chain can be used to
quantify so-called resource footprints.9,10 Examples of resource
footprint indicators include land use, water consumption, raw
material extraction, and life cycle energy use.11−19 Because they
are situated early on in the DPSIR chain, such resource
footprint indicators are relatively straightforward to calculate
and communicate, yet they are unlikely to represent the total
environmental impact of a particular anthropogenic entity.20,21

For example, environmental impacts primarily due to emissions
of toxic substances are poorly represented by resource
footprints.22,23 Moreover, certain footprints are considered
overly simplistic for use in environmental assessments. For
example, material footprints that merely sum the amounts of all
raw materials needed fail to consider that the environmental
impacts associated with their extraction and processing can be
highly material-specific.24

In short, the different footprint approaches involve clear
trade-offs between comprehensiveness and representativeness,
on the one hand, and data requirements, computational efforts,
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and reliability, on the other. A vital question in this context,
therefore, is how damage footprints are connected to the more
straightforward resource footprints.11,22,25 Various studies
investigated mutual correlations among footprint indica-
tors.26−29 These studies focused on quantifying redundancies
among different types of indicators and generally found that 4
to 6 indicators are enough to cover virtually all variance among
different footprint indicators. Other studies looked specifically
at resource-damage relationships22,30 but considered bivariate
relationships only, demonstrating that the cumulative energy
demand was a useful proxy for environmental damage for most
product categories, except for biobased products. Up to now,
the relationship between multiple resource and damage
footprints has never been systematically quantified. Knowledge
of the relationships between both sets of indicators will clarify
the extent to which resource footprints may serve as proxies for
damage to humans and biodiversity.
In this study, we analyzed the relationships between two

state-of-the-art damage footprints and four resource footprints
associated with the manufacturing of 976 products (Supporting
Information data file S1). Damage footprints pertain to human
health and biodiversity, which are expressed in years of disabled
life or shortened lifespans and in local species losses,
respectively. Resource footprints reflect the use of fossil energy,
raw materials, land, and water. To quantify the damage and
resource footprints associated with each product, we used
resource use and emission data from the ecoinvent database
(v3.1).31 To quantify damage to human health and biodiversity,
we multiplied the products’ resource uses and emissions with
so-called characterization factors that aggregate relevant
environmental cause-effect pathways (Figure 1), thus yielding

an estimate of the total amount of damage per unit of resource
use or emission for each product.32,33 We then applied multiple
log−linear regression to link each of the two damage footprints
to the four resource footprints. To elucidate the primary cause-
effect pathways underlying the relationships between the
damage and resource footprints, we calculated the contribution
of each emission and resource use to the two damage footprints
of each of the 976 products.

■ METHODS

Product Selection and Life Cycle Scope. We based our
analysis on the ecoinvent database (version 3.1). This database
contains “cradle-to-gate” life-cycle data on 1,597 types of
emissions representing numerous substances emitted to various
environmental compartments (air, water, and soil) and 272
entries regarding the use of resources, including groundwater
and surface water, fossil fuels, minerals, and various types of
land cover. For our analysis we selected all products with
emissions and resource extractions expressed per kg of product.
The “cradle-to-gate” life cycle perspective of the database
implies that we covered the production part of the products’ life
cycles, thus including resource use and damage from extraction
of the raw materials up to the delivery to the market. Following
the product selection procedure by Steinmann and co-
workers,29 we applied the following selection criteria to
minimize overlap between products:
• Individual products (e.g., concrete block) were preferred

over aggregated categories (e.g., “construction materials”).
• For identical products, for which different production

regions or production methods were available, we selected the

Figure 1. Schematic overview of the DPSIR chain and calculation of resource and damage footprints. The DPSIR chain shows how a primary human
need (Driver), such as the need for food (onions), may lead to a resource extraction or substance emission, in this case fertilizer application
(Pressure), resulting in a change in the abiotic environment, like eutrophication (State), a corresponding ecological response, like fish death
(Impact), and eventually a societal reaction, such as environmental legislation on fertilizer application (Response). Resource and damage footprints
are calculated based on all emission and resource extractions (located in the Pressure part of the DPSIR chain) that are associated with the
production of, in this case, 1 kg of onions. Emissions, extractions, and resource footprints are retrieved from the ecoinvent database. The five
emissions/resource extractions that ultimately contribute most to biodiversity damage induced by onion production are displayed. The state of the
environment is calculated via different routes in several impact categories, which can ultimately result in damage to human health, biodiversity
damage, or both. The ReCiPe methodology provides the factors necessary to convert the amount of emissions/resource extractions into
environmental damage.
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global or “rest-of-the-world” market mix instead of specific
subtypes based on particular production methods or regions.
• Some products share (almost) identical production chains

(such as isobutanol and butanol). In these cases we selected the
products with the largest overall amount of interventions.
Similarity among the product chains was checked by dividing

all interventions related to the production of 1 kg of a product
by all the interventions of all other products. In case of an
identical production chain, the ratios for all interventions are
the same. Two products were considered to come from the
same production chain if the coefficient of variation of these
ratios was <0.01. Like in the paper by Steinmann and co-
workers29 the final set contained 976 products, from seven
categories: Agricultural & forestry products (106), Building
materials (72), Chemicals (435), Metal products & electronics
(128), Ores, minerals & fuels (91), Plastics (64), and Processed
biobased products (80) (see data file S1 for the names of all
products).
Resource Footprints. We quantified four resource foot-

prints for each product: nonrenewable energy demand, raw
material use, land use, and freshwater consumption. Energy
demand (MJ) was quantified as the total amount of fossil
energy required, including energy from oil, coal, gas, and peat.
Raw material use (kg) was calculated as the total amount of all
raw materials extracted from the earth, excluding fossil fuels
because these were already covered by the energy demand
calculations. Biotic resources were not included in the material
footprint. Metal extractions as reported in ecoinvent were
converted to ore extractions by dividing by the metal-specific
ore grades, as reported in ecoinvent.31 In case of multiple
metals derived from the same ore (e.g., silver and gold), we
used the maximum ore extraction needed to obtain the required
amount of any of the metals, in order to avoid double counting
of ore produced. The land footprint (m2 · yr) was quantified as
the total area of land used over time, irrespective of the type of
land use, and not including land transformation. The employed
blue water footprint covers the life cycle consumptive use of
water. Freshwater consumption (m3) was defined as the
amount of evaporated water plus the amount of water that is
incorporated in the products. This consumption was calculated
as the difference between freshwater extracted from nature and
the amount of water returned. In 245 out 976 cases the water
evaporation (calculated by summing all emissions of water to
the air) exceeded the amount of extracted water minus the
amount of returned water. In these cases the evaporation was
used as approximation of the total water consumption.
Damage Footprints. We calculated the human health and

biodiversity damage footprints of each product by summing the
resource uses and emissions multiplied with the corresponding
characterization factors (CFs), i.e. factors representing the
amount of damage per unit of resource use or emission, as

∑= ·IDF CFx p
i

i p i x, , ,

where DFx,p is the damage footprint for category x (human
health or biodiversity) and product p, Ii,p is the amount of
resource use or emission i associated with product p, and CFi,x
is the characterization factor for resource use or emission i and
damage category x (damage to human health or biodiversity).34

We calculated human health damage as disability-adjusted life
years (DALYs; yr) induced by climate change, stratospheric
ozone depletion, toxicant exposure, photochemical ozone
formation, particulate matter formation, water stress, and

ionizing radiation.32 Biodiversity loss was calculated as the
time-integrated local species loss (species · yr) due to climate
change, terrestrial acidification, photochemical ozone forma-
tion, freshwater eutrophication, terrestrial ecotoxicity, fresh-
water ecotoxicity, marine ecotoxicity, water stress, agricultural
land occupation, and urban land occupation.32 See Supporting
Information Table S1 for a more detailed description of the
impact pathways considered in these impact categories and the
sources of the underlying data.
To account for spatial variability in damage we used country-

specific CFs for acidification, freshwater eutrophication, and
water consumption and region-specific CFs for fine particulate
matter formation and photochemical ozone formation. There
were 156 countries for which acidification, freshwater
eutrophication, and water consumption CFs were provided
by the ReCiPe methodology.32 Each of these countries was
assigned to one of the 58 regions for fine particulate matter
formation and photochemical ozone formation (Supporting
Information data file S2).
To avoid artificial environmental benefits for human health

and biodiversity, net negative emissions of metals to agricultural
soils due to metal uptake in crops, as reported in ecoinvent
v3.1, were not considered in our cradle-to-gate analysis.
Furthermore, we neglected potential human health impacts of
pesticide uptake by crops, as we did not have information
whether the crops were used for food, feed, or biofuels. Finally,
only the off-target biodiversity impacts of chemical emissions to
agricultural soil were considered. This was done to avoid
double counting with the biodiversity impact caused by
agricultural land occupation.

Regression Modeling. We used multiple linear regression
(least-squares fitting) to relate the damage footprints to the
resource footprints. To account for spatial variability in impacts,
we performed the regression analysis for each of the 156
countries separately, thereby implicitly assuming that all
emissions and resource extractions required for each of the
976 products occur in that specific country. Because the
footprints varied up to 10 orders of magnitude (based on all
products), all footprints were log-transformed prior to model
fitting. In regression models, high correlations among
explanatory variables (in our case, the resource footprints)
lead to unstable regression coefficients. If this is the case, it
becomes impossible to determine which of the predictors is
responsible for which share of the variance.35,36 Therefore, we
fitted all possible combinations of predictors and removed the
regression models for which any of the predictors had a
Variance Inflation Factor (VIF) larger than 5.35 We then ranked
the remaining models according to Akaike’s Information
Criterion (AIC)37 which enabled us to select the most
parsimonious model per country, damage footprint, and
product group (Supporting Information Table S2). We
calculated Cook’s distances for the full model set to assess
the influence of individual products on the regression
coefficients.38 Cook’s distances were below the threshold of 1
in all cases; therefore, all individual products were retained in
the analysis. All analyses were performed in the statistical
program R.39 Plotting of all figures except Figure 1 was
performed with the package “Cairo”,40 and VIFs were
calculated with the package “HH”.41 Plots of the model
residuals were created to analyze the accuracy of the predictions
as well as check for potential violations of regression
assumptions (Supporting Information Figures S7 and S8).
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The plots revealed that the errors in the prediction did not
systematically deviate from the expected normal distribution.
Cause-Effect Pathways. To elucidate the relationships

between the damage and resource footprints, we first calculated
the contribution of each individual resource extraction or
emission to the damage to human health or biodiversity of each
product, as

=
·

∑ ·
I

I
FF

CF

CFx i p
i p i x

i i p i x
, ,

, ,

, ,

where FFx,i,p is the fraction of the damage footprint of product p
for category x (human health or biodiversity) caused by
resource extraction or emission i, Ii,p is the amount of resource
extraction or emission i associated with product p, and CFi,x is
the characterization factor for resource extraction or emission i
and damage category x. Per damage footprint, we ranked the
median contributions FFx,i,p over all products and per product
group. This analysis was performed only for the default ReCiPe
characterization factors, i.e. country-specific differences due to
spatial variability were not included.
Damage Scenarios. Damage footprint calculations require

particular assumptions and choices, for example with respect to
the time horizon considered, the cause-effect pathways to be
included, and the expected ability of humans and ecosystems to

mitigate or adjust to future damage. In the ReCiPe method-
ology, these assumptions and choices are aggregated in three
scenarios that reflect differences in value choices based on
Cultural theory considerations.42−44 Each of these scenarios is
represented by a coherent set of characterization factors. To
assess the influence of these different scenarios on our results,
we performed the damage footprint calculations and sub-
sequent regression analyses based not only on the character-
izations of the default scenario but also according to the two
other scenarios. The “high resilience” scenario assumes that
ongoing technological and economic developments enable
mankind to mitigate future damage, therefore giving more
weight to present-day effects than future damage and
accounting only for well-established cause-effect relationships.
The “low resilience” scenario reflects the view that nature is
fragile, that all possible cause-effect paths need to be accounted
for (precautionary principle), and that a long time horizon is
most adequate.

■ RESULTS

Human Health Damage. Overall, the four resource
footprints accounted for more than 90% of the variation in
human health damage. Human health damage was primarily
associated with fossil energy use, followed by the use of raw

Figure 2. Associations between human health damage (left) and biodiversity damage (right) and four resource footprints (Energy, Material, Land,
Water). The relative importance is expressed as standardized coefficients of log−linear regression models based on 976 products. Error bars display
the 90% confidence interval in predictor importance, resulting from spatial variability in damage. R2 was calculated as the mean value obtained from
the 156 country-specific regression models.

Figure 3. Contributions of major resource extractions or substance emissions to human health damage (left) and biodiversity damage (right).
Boxplots represent quartiles and 90% intervals encompassing the 976 products.
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materials, water, and land (Figure 2, Supporting Information
Figures S1 and S2). The strong association between human
health damage and fossil energy use reflects adverse health
effects due to the emissions of carbon dioxide (CO2), fine
particulate matter, and sulfur dioxide (SO2) associated with the
combustion of fossil fuels (Figure 2 and Supporting
Information Figure S3). Emissions of CO2 and other
greenhouse gases lead to climate change, which in turn lead
to increased malnutrition due to crop failures and increased
transmission of infectious diseases.45 Fine particulate matter,
including sulfur aerosols produced by SO2 emissions, has
adverse effects particularly on people suffering from lung or
heart diseases.46,47 As the small error bars indicate (Figure 2),
the associations between damage and resource footprints were
not sensitive to spatial variation in impacts between the 156
countries included in our analysis.
Biodiversity Damage. The four resource footprints also

accounted for at least 90% of the damage to biodiversity
(Figure 2, Supporting Information Figures S4 and S5). Overall,
damage to biodiversity could be approximated in particular by
the combination of the land and energy footprints. Land use is
generally acknowledged as an important driver of biodiversity
loss because it leads to the destruction or modification of
natural habitats.48,49 The importance of fossil energy demand is
primarily attributed to CO2 emissions associated with fossil-fuel
combustion (Figure 3 and Supporting Information Figure S6).
Climate change induced by these emissions may result in
biodiversity loss through shifts or reductions in the ranges of
species.48,50 Acidification as a result of SO2 emissions also had a
relatively large contribution to the overall biodiversity damage
(Figure 3). The relative impacts of the resource footprints
showed more variation among the 156 countries than for
human health impacts (Figure 2). This is due to biodiversity
damage by water stress being highly location-specific, with
higher impacts in countries with greater water scarcity.

■ DISCUSSION
Over the past 20 years, a variety of footprint assessment
methods have been developed, ranging from relatively simple
resource- or emission-based indicators to more comprehensive
damage-based indicators. Recently, an explicit call has been
made for the various methods to be harmonized and for the
representativeness of the resource-based footprints to be
evaluated.11 Using a comprehensive damage assessment
methodology and state-of-the-art life-cycle data associated
with a large number of products, we found that four relatively
straightforward resource footprints accounted for the majority
of the variation in damage to human health and biodiversity.
The ecoinvent 3 database, as used in our study, is

comprehensive in terms of included environmental flows and
also has a clear set of data quality guidelines. Similarly, the
ReCiPe 2016 method is a state-of-the-art method to quantify
damage on an end point level. Other impact assessment
methods might use different characterization factors and
therefore come to different estimations of the environmental
damage. However, studies aimed at comparing different impact
assessment methods generally find very strong correlations
between impact categories from different methods.26−29 These
findings make it likely that the choice of impact assessment
method is not very influential. Our findings are also consistent
with independent studies that acknowledge the importance of
energy and land use as primary drivers of human health and
biodiversity impacts.2−4 Our study is, however, not without

limitations. One limitation is that not all emissions related to
the products’ life cycles are reported in the ecoinvent database.
For example, emissions of nanoparticles are not included, and
therefore any potential damage that these may cause to
biodiversity or human health cannot be included either. A
second limitation is that in the ReCiPe method not all impacts
are included, such as ocean acidification, which would also lead
to an underestimation of the biodiversity damage footprint.
Both of these limitations may result in weaker correlations
between resource and damage footprints, if the missing
emissions or damage pathways are unrelated to overall resource
use. A third limitation is that we focused on the “cradle-to-gate”
phase of the products’ life cycles. We do expect, however, that
the resource footprints are also representative of the environ-
mental damage caused during the use and waste phases (“gate-
to-grave”). For example, for buildings and household
appliances, damages from the use and waste phases are
dominated by energy and/or water use.51,52

The relationships observed between resource and most of
the analyzed damage footprints were consistent across product
groups (Supporting Information Figures S1 and S4), countries,
and assumptions used in the damage calculations. The latter
can be observed from the similarity among the results of the
default damage, high-resilience, and low resilience scenarios,
which represent three coherent sets of assumptions commonly
used in environmental impact assessments (Supporting
Information Figures S2 and S5). There were only three main
exceptions to these general findings, resulting in lower
explanatory power of the resource footprints or shifts in their
relative importance. First, particularly if the damage of a
particular entity is primarily caused by process-specific
emissions of toxic substances, the resource footprints are less
representative of the damage. For human health damage, this
was the case for plastics and building materials (R2 ≈ 70−80%,
Supporting Information Figure S1). The manufacturing of
some of these products is associated with substantial process-
specific emissions of certain substances. During the manufac-
ture of some plastics for example, long-lived hydrochloro-
fluorocarbons are emitted which lead to ozone depletion and
global warming, resulting in human health damage not closely
related to overall amounts of resource use. For biodiversity
damage, the explanatory power of the four resource footprints
was slightly lower for plastics (R2 = 71%) and processed
biobased products (R2 = 84%) (Supporting Information Figure
S4), because the global warming effect of certain process-
specific emissions is not well-captured by the resource
footprints. Second, the associations between biodiversity
damage and resource footprints tended to vary across products.
For example, the damage from agricultural, forestry, and
biobased products was primarily due to land use, whereas the
impacts of the other product groups were primarily related to
fossil energy use (Supporting Information Figures S4 and S6).
Third, the relative contributions of land and energy use also
varied depending on whether the damage calculations followed
a default or high-resilience as opposed to a low-resilience
scenario (Supporting Information Figure S5). In the low-
resilience scenario, which assumes a limited capability of
humans and ecosystems to adjust to change, the damage is
calculated over a time horizon longer than the default of 100
years. This results in a substantial increase in the contribution
of the energy footprint at the expense of the contribution of the
land footprint.
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Critics of resource footprints argue that environmental
impacts cannot be adequately captured by simple, one-
dimensional indicators, whereas their advocates stress that the
simplifications involved are necessary to ensure that the
indicators speak to policy makers and the general public.10,11,53

By relating two comprehensive damage indicators to four
straightforward resource footprints, we have demonstrated that
resource footprints are representative screening indicators of
damage to human health and biodiversity. Our analysis further
revealed that human health damage is primarily induced by
fossil energy use, whereas biodiversity damage is primarily
related to both land and fossil energy use. Thus, we conclude
that energy and land footprints provide valuable proxies for the
overall environmental damage produced by a particular entity.
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