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1 INTRODUCTION

1 Introduction

In recent years, Cloud Computing has become an emerging technology that gains wide
influence on IT systems. Cloud Computing is a distributed computing model for en-
abling service-oriented, on-demand network access to rapidly scalable resources [9].
Such resources include infrastructure as a service (IaaS), development and runtime
platforms as a service (PaaS), and software and business applications as a service
(SaaS). Clients do not own the resources, yet applications and data are guaranteed to
be available and ubiquitously accessible by means of Web services and Web APIs “in
the Cloud”.

1.1 Value Proposition

The main value proposition of Cloud Computing is to provide the clients a cost-effective,
convenient means to consume the amount of IT resources that is actually needed; for
the service provider, better resource utilization of existing infrastructure is achieved
through a multi-tenant architecture.

From a business perspective, Cloud Computing is about improving organizational
efficiency and reducing cost, often coupled with the objective of achieving a faster time-
to-market. Centrally hosted services with self-service interfaces can help to reduce
lead times between organizational units who use the cloud as a collaborative IT envi-
ronment. Re-usable components, packaged on virtual machines, provide a way to ex-
change working IT solutions. Capabilities to allocate and de-allocate shared resources
on demand can significantly decrease overall IT spending. Low-cost access to data
centres in different geographical regions may further reduce market entry barriers and
enable new business models.

From a technology and engineering perspective, Cloud Computing can help to real-
ize or improve scalability, availability, and other non-functional properties of application
architectures. In this paper, we focus on the technology perspective, and in particular
on challenges and opportunities of Cloud Computing research related to quality-driven
software service architectures. These include aspects of availability, runtime perfor-
mance and power management, as well as privacy and distributed data usage.

1.2 Challenges & Research Questions

Not all desired architectural properties can be achieved at the same time. Trade-off
decisions have to be made between several (sometimes contradictory) goals, such as:

• increase availability & reliability
• increase performance (latency, throughput)
• increase security and ensure privacy
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1.3 Virtualization 1 INTRODUCTION

Which metrics are useful to describe and analyze these trade-off decisions? Based
on specific software architecture styles and solutions: How are these goals corre-
lated? How can trade-offs be accounted for during application design, how can they
be adapted during run-time?

Since several cloud providers succeeded to introduce scalable, highly available soft-
ware components such as messages queues or data stores as a service, building a
software application (as a service) to be deployed in the cloud requires new architec-
tural decisions and decision-making processes.

Which cloud services can be adapted as components of a new software/service?
How do we differentiate or compare existing services and measure their properties?
Which is the right service to be used in the cloud application?

1.3 Virtualization

Virtualization technology provides the technical basis for Cloud Computing. Virtualiza-
tion has already been in the focus of research in the early 1970s [36], but gained a
lot of attention in the last years, as inexpensive servers and client machines became
powerful enough in order to be used for virtualization. In general, virtualization deals
with the creation of virtual resources, such as operating systems, servers, or storage
devices.

Different kinds of virtualization can be distinguished: System virtualization adds a
hardware abstraction layer on top of the hardware, which is called hypervisor or virtual
machine monitor. On top of this layer, virtual machines can be run on the physical ma-
chine which run regular operating systems. Virtual Machines do not have direct access
to the hardware, as opposed to non-virtualized operating systems. or the hypervisor
itself Except for a special domain (Dom0), the hypervisor runs virtual machines in a
non-privileged environment (DomU). Using system virtualization, multiple virtual ma-
chines, which may run various operating systems, can be run on a single physical ma-
chine. In a similar way, storage virtualization provides access to a logical storage that
abstracts from (possibly heterogeneous) physical storage devices. Application virtual-
ization provides a virtualized environment that runs inside an OS process and provides
a platform-independent environment for applications (e.g. Java applications running in
a Java virtual machine). Other application virtualization approaches exist that allow for
executing applications without having to install them (e.g. terminal services).

For Cloud Computing environments, system virtualization is the most important tech-
nology that is used to provide IaaS, PaaS and SaaS resources. In this paper, the term
virtualization is used in the context of system virtualization.
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1.4 Decision Support 2 CHALLENGES AND OPPORTUNITIES

1.4 Decision Support

When building new software applications or services that might potentially be deployed
in the cloud, some decisions are inevitable in different stages of the software engi-
neering process. This starts with initial build-or-buy decisions which lead to subsequent
questions of how services are operated and who has control over and holds responsible
for service delivery. For example, use of an in-house IT department may be compared
to the use of third party service providers. In the context of cloud computing, this implies
an important, principle business decision whether to own and maintain a data center or
outsource operations to the cloud. The later stages of the decision process include the
design, deployment and operations of applications and services.

Optimizing the non-functional properties during design- and run-time, and consider-
ing to employ existing scalable, highly available services from the cloud requires de-
cision support methods that help to make the right decisions and build cloud services
that fulfil goals and requirements, both non-functional and functional.

Generic approaches to optimization and decision-making already exist [93] [52] and
can be applied to build a comprehensive decision support framework. However, cus-
tomizing these methods to make them applicable to the decisions that have to be made
in a cloud computing context is yet an open research issue. A first approach and frame-
work has been presented in [61].

In this paper, we explore the opportunities and critical challenges of Cloud Computing
that represent different, potentially conflicting objectives. Understanding these objec-
tives is fundamental to Cloud service engineering. Using frameworks such as [61],
optimization techniques or artificial intelligence methods can subsequently be applied
to find optimal trade-offs or solutions in decision-making over measured data and for
multiple goals. Moreover, when making decisions based on non-measureable data,
multi-criteria decision-making methods can help to turn qualitative, non-measurable in-
formation into numbers [78]. Using methods to retrieve evaluation results of multiple
alternatives regarding many criteria to make alternatives comparable, allows immedi-
ate, substantiated decision-making by simple selection.

For the different objectives, i.e. availability and performance of software running in
the cloud, as well as questions related to privacy and distributed data usage, we give
an overview on the state of the art, highlight important research questions, and outline
approaches to tackle the presented challenges.

2 Challenges and Opportunities

Cloud Computing introduces a number of technology and engineering challenges, many
of which relate to “traditional” requirements of distributed systems, which now must be
revisited in the context of virtualized environments.
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2.1 Availability

Generally, availability is the degree to which a system is operable, that is, capable of
producing responses to submitted requests. Stronger definitions of availability may in-
clude objectives with regard to the time window allowed for any response to arrive, or
the time window allowed for the system not to be operable. In modern web environ-
ments, high availability often is a key requirement, as even the slightest outage can
introduce significant financial consequences and impact customer trust. High availabil-
ity typically is addressed by means of replicating servers and storage. This introduces,
however, the need to balance trade-offs with other system properties. In the remainder
of this section, we will discuss how to leverage cloud architectures in order to improve
availability. We will revisit other aspects of availability in Section 2.4.

2.1.1 State of the Art

The notion of server farms and geoplex architecture can be used to describe and dis-
cuss cloud computing architecture [25]. Server farms are distributed systems based
on large-scale server clusters that are located at a single site (a single data center).
Server farms that are geographically replicated across different sites and connected by
the Internet constitute a geoplex.

Scalability and high availability are key requirements of modern cloud-based applica-
tions and services. Incremental scalability can be achieved by partitioning large data
sets into data shards which are then distributed across multiple servers. This technique
does not improve availability, though. Availability is a major challenge in the face of
massive numbers of servers constituting an environment where frequent failures are
a fact to be coped with. Replication of servers and storage is the key technique to
achieve high availability. Alternatively and additionally, Recovery Oriented Computing
(ROC) proposes various techniques to improve availability by focusing on failure recov-
ery instead of failure protection [68].

Replicating data across networked servers provokes a trade-off challenge known as
the strong CAP principle [30] [35]. CAP states that only two of the three properties,
transactional consistency (C), high availability (A), and resiliency to network partitions
(P) can be achieved at the same time. In widely distributed systems – typical cloud
computing environments – partitions are considered inevitable, leaving the trade-off
between consistency and availability. For example, strong consistency can be achieved
by pessimistic replication mechanisms at the cost of availability. On the other side, high
availability can be achieved by optimistic replication at the cost of consistency. The
weak CAP principle is a generalization of the strong CAP principle by formulating the
trade-off as a continuum in lieu of just binary choices. In particular, relaxing consistency
requirements and trading them for higher availability is a hot cloud computing research
topic [13] [87] [74].
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Due to ease of scalability, key-value data stores have become popular solutions for a
wide range of cloud-based applications and services, from Amazon’s shopping carts to
Zynga’s social gaming engine. Amazon developed “Dynamo”, a distributed key-value
data store with high reliability and availability requirements. Dynamo stores relatively
small objects, usually less than 1 MB in size. A key requirement of Dynamo is that
the data store is “always writable”, i.e. users should never experience a situation in
which they perceive a failed write. Amazon uses high-percentile performance-oriented
Service Level Agreements (SLAs) to monitor the quality of its system architecture re-
quirements. The architecture is configurable in a way that lets developers (and services)
make trade-offs between functionality, non-functional system requirements, and cost.

The Google File System (GFS) is representative for cloud-based file storage. GFS
supports many of Google’s services, such as web indexing, Google Earth and Google
Finance. Different from Amazon’s Dynamo and Zynga’s Membase key-value stores,
GFS is optimized for storing very large files (one file is usually many GBs in size) and
specific access patterns, such as large streaming reads and large sequential writes.
The architecture of GFS is based on a single Master node and multiple chunkserver
nodes. Files are split up into chunks, by default 64 MB in size, and distributed over
multiple chunkserver nodes. The Master node coordinates multiple chunkserver nodes
and manages file system metadata in memory. Google’s software engineers are en-
couraged to program applications in a way that is compatible with GFS; for example:
append records to files instead of overwriting files. Many concurrent append operations
can be merged and therefore simplify inconsistency conflict resolution. A copy-on-write
snapshot mechanism allows developers to quickly branch copies of large data sets and
eventually roll back to a previous state if something goes wrong.

Researchers from Yahoo! struggle with the same challenges as their colleagues at
Google and Amazon. Against the background of Internet-scale distributed systems,
the PNUTS database system has been developed. PNUTS has been optimized for
workloads that read and write only a single record or a small group of records. Similar to
Google’s GFS-based “Bigtable” data store, PNUTS offers developers a simple database
system interface without the complex query functionality of modern relational database
systems. Operations are restricted to single-table selection and projection. Referential
integrity and other constraints are not enforced by PNUTS; join operations and the like
are not provided.

2.1.2 Goals and Approach

Cloud computing is widely perceived as a disruptive technology shift from on-premise
infrastructure, platforms andapplications to Internet-centric infrastructure, platform, and
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software services [53] [57]. Moving on-premise applications and services into the cloud
can improve availability, particularly along with the following properties:

• Worldwide access

• Workload elasticity

• Fault-tolerance & disaster-tolerance

Desktop applications and applications deployed in small-scale networks (LANs) are
designed to be accessible to a group of local users. Although access can be granted to
remote users in different geographic regions, this is not the natural modus operandi of
such applications. Moving an application into the cloud can simplify access of worldwide
users.

Workload elasticity means adapting system resources to changing workloads in real-
time, i.e. growing under increasing workload and shrinking under decreasing workload.
Vertical scalability – replacing old hardware with new hardware – is not well-suited
for providing workload elasticity. Horizontal scalability, i.e. partitioning and replicating
homogeneous system components, on the other side, allows incrementally adapting
system resources to changing workloads. It is an open question how traditional ap-
plications, based on flat file system storage, XML data stores or relational database
systems, can be migrated to incrementally scalable data stores like Dynamo, GFS and
PNUTS.

Architectures based on a federation of clouds allow for “cloud bursting” by allocating
resources of multiple different cloud environments. Moreover, a federated cloud pro-
vides richer capabilities, such as the different application-specific data store solutions
discussed before. Users of a federated cloud could for example employ simple key-
value stores for caching small web site objects and scalable distributed file systems for
storing and retrieving larger multimedia content.

Cloud-based application architecture can provide improved levels of fault-tolerance
compared to locally hosted applications – and even disaster-tolerance. Infrastructure
as a service (IaaS) allows allocating and de-allocating system resources on demand.
Thereby, replication techniques can potentially be implemented more cost-efficiently.
Research work on building a ”Recovery Cloud” approaches disaster recovery from the
perspective of application migration and configuration management where compute
clouds are used as an on-demand “emergency environment” [54]. Cloud computing
services and technology can be elevated to provide an inexpensive rapid recovery solu-
tion. The approach is based on automated workflows of virtual appliances in a compute
cloud, in combination with data backup and recovery mechanisms of a storage cloud.
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2.1.3 Research Questions and Challenges

Cloud computing provides techniques and infrastructure for building highly available,
Internet-scale applications and services.

• What are the major trade-off decisions when moving into the cloud? The trade-off
between “availability” and “consistency” serves as a prominent example. Other
trade-off decisions must be identified and evaluated, particularly taking into con-
sideration “scalability”, “reliability”, “performance” (latency and throughput), and
“cost-efficiency”.

• Benchmarking cloud services requires a new set of benchmarking tools that con-
sider cloud-specific properties, such as practically infinite scalability, relaxed con-
sistency guarantees, on demand resource allocation and accounting, et cetera.

Cloud computing offers the exciting opportunity for an overhaul of antiquated infor-
mation systems. However, organizations prefer to re-use existing application code and
binaries – which count as assets on the balance sheet. If the information system must
be operational at all times, a migration is further complicated. How to build new cloud-
based applications that accomplish aforementioned promises of improved scalability
and availability? How to migrate existing software into the cloud?

An increasing number of heterogeneous end-user devices demands for connecting
the cloud to multiple delivery channels. Applications and services should be delivered
to smartphones and netbooks, TV sets, cars, et cetera. On the other side, there are also
multiple heterogeneous cloud services, such as data store solutions, compute clouds,
and messaging services.

• How can Desktop applications and traditional network-based application architec-
tures, such as Java EE architectures, profit from the integration of cloud services
or being moved into the cloud altogether?

• Which new tools are necessary to facilitate service (re-)engineering and migra-
tion?

• Heterogeneous cloud services and application delivery channels demand for in-
tegration technology. How should a “Cloud Service Bus” be designed?

2.2 Design-time Performance Prediction

Reasoning about the performance of a software system is a key factor that has to
be taken into account in software development. If performance flaws of a software
are detected early in the software development process, costs and efforts of changing
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the system to increase the performance are lower compared to later changes. Model-
driven performance prediction proposes a solution which allows the software architect
to reason about the performance during the design-time. For example, such predictions
can be used to assess different software design alternatives with respect to software
performance. Based on a design model of the software and the system the software is
running on, performance analysis models are derived which can be solved by different
analysis tools.

However, performance prediction approaches have to be enhanced to be used for
software running in virtualized environments, as it is the case for cloud computing solu-
tions.

2.2.1 State of the Art

Design-time performance prediction of software systems has been in the focus of re-
search for the last years (surveyed in [8] and [55]). However, the recent trends of
software running in virtualized environments proposes new challenges to software per-
formance prediction. Reflecting performance-relevant virtualization properties would
also allow for choosing between different virtualization solutions, as the choice of virtu-
alization solutions may have an impact on the application’s performance. As the per-
formance heavily depends on the hardware resources and the system environment a
software is running on, these factors have to be taken into account for performance
prediction. Such models are available for analyzing the performance of non-virtualized
software systems, but reusing the models for analyzing software running in virtualized
and cloud-computing environments may lead to imprecise or wrong prediction results.

In [59], [60], an approach to model the performance impact of server consolidation
with virtual machines is presented. The authors use an analytic queueing model to de-
scribe the performance (i.e., response time, throughput, utilization) of virtual machines
running on a single hypervisor. This approach does not provide means to model the
mapping of virtualized resources to physical resources explicitly. The system is ab-
stracted at a very high-level and some basic analytic performance models are used
which provide very rough estimates of the system performance. In [42], an extension
of the PCM meta-model [10] has been proposed that allows for modeling hierarchical
schedulers. While allowing rudimentary modeling of complex execution environments,
explicit properties of hypervisors cannot be specified or used for performance predic-
tions.

2.2.2 Goals and Approach

To allow for accurate performance predictions of software running in virtualized envi-
ronments, performance-relevant properties of the virtualization layer have to be taken
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into account. However, integrating such properties into an analysis model is a cumber-
some task, as it has to be done manually and requires domain knowledge. In addition,
different virtualization techniques come with different performance properties, making
a reuse of an existing performance prediction model problematic for a different virtual-
ization solution.

To enable performance predictions for virtualized software systems, we propose an
approach that allows to detect performance-relevant properties of virtualization environ-
ments automatically through goal-oriented measurements. Such measurements are to
be conducted on the target platform (semi-)automatically. The results of the measure-
ments are then evaluated with statistical techniques and integrated into the performance
prediction model. Developing such an approach with a high degree of automation leads
to the encapsulation of domain knowledge and the developing of a performance model
with a limited effort. The performance analyst can also repeat the measurements, for
example for repeated performance analyses based on updated performance models
when virtualization properties have been changed.

We applied the approach to operating system scheduling properties and yielded
promising results [41]. To apply the approach to virtualized environments, different
performance-relevant properties have to be regarded, and thus different measurements
have to be designed.

As measurements are taken on the target platform, additional challenges arise when
performing them on virtualized systems or cloud-computing environments. First, usu-
ally no full control on the target system is given. Thus, measurements should make as
few assumptions on the platform as necessary in order to work for different virtualization
solutions. Second, software running in virtualized systems or cloud-computing environ-
ments have to share physical resources with other applications. This also means that
while performing the measurements, additional load has to be expected which can lead
to disturbed measurement results. To derive reasonable performance models from the
experiment results, the measurements and measurement techniques have to be de-
signed in a way that they can cope with the possibility of additional system load. Here,
existing approaches have to enhanced, as usually a system without disturbing load is
assumed.

2.2.3 Research Questions and Challenges

To predict the performance of applications running in virtualized environments during
design-time, the following challenges have to be addressed:

• What are the performance-relevant properties of virtualized environments that can
be taken into account during design-time?

• How to model software for design-time performance prediction, and how to include
performance-relevant properties of virtualized environments into the model?
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• How to integrate such performance-relevant properties into performance analy-
ses?

To automatically detect performance-relevant properties of virtualized environments
through goal-oriented measurements, additional challenges arise:

• How to design measurements to detect performance-relevant properties in a
technology-independent way?

• How to deal with additional load on the system which might lead to disturbed
measurement results?

2.3 Run-time Performance and Power Management

Cloud computing and virtualization promise substantial reduction of IT operating costs
resulting from higher energy efficiency and lower system management costs. Today,
only 12% of x86 server workloads are running in virtual machines, however, by 2013
that number is expected to rise to 61% [15]. However, the adoption of cloud computing
and virtualization comes at the cost of increased system complexity and dynamicity.
The increased complexity is caused by the introduction of virtual resources and the
lack of direct control over the underlying physical hardware. The increased dynamicity
is caused by the complex interactions between the applications and workloads shar-
ing the physical infrastructure. The inability to predict such interactions and adapt the
system accordingly makes it hard to provide quality-of-service guarantees in terms of
performance and availability. Moreover, the consolidation of workloads translates into
higher utilization of physical resources which makes the system much more vulnerable
to performance and availability problems resulting from unforeseen load fluctuations. To
address these challenges novel techniques for run-time performance and power man-
agement in Cloud Computing environments are needed. Such techniques should allow
to proactively adapt the system to changes in application workloads and resource al-
locations in order to ensure that performance requirements are continuously met while
resources are used efficiently.

2.3.1 State of the Art

In [89], an analytical model is used to solve resource management problems in vir-
tualized environments using deterministic and stochastic optimization algorithms. A
meta-model for modeling the virtualization layer in detail is not provided. The authors
concentrate on allocating resources dynamically based on a ”Monitor-Analyze-Plan-
Execute” pattern which takes into account evolving system workloads. This approach,
however, does not provide means to model the mapping of virtualized resources to
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physical resources explicitly. The system is abstracted at a very high-level and some
basic analytic performance models are used which provide very rough estimates of the
system performance.

Other works [81, 91] provide models for resource management in virtualized sys-
tems, however, they focus on the deployment of virtual machines and do not provide
means to predict the responsiveness and capacity requirements of the latter. A run-
time model of CPU-bounded web service applications running in a virtual machine is
presented in [82]. Black-box models describing the relationship between CPU alloca-
tions in virtual machines and response time are derived from experimental data. Some
recent approaches to run-time performance management in virtualized environments
were proposed in [95, 90, 66, 49], however, they do not provide any support for perfor-
mance prediction at run-time in order to guarantee service-level agreements.

2.3.2 Goals and Approach

To address the challenges of predictable and efficient resource management in virtual-
ized data centers comprising a Cloud Computing environment, we advocate the devel-
opment of novel techniques for self-adaptive management of application performance
and energy efficiency. The goal of these techniques will be to continuously optimize the
performance and energy efficiency of the computing infrastructure by automatically re-
configuring resource allocations in response to changes in application workloads. The
developed techniques will be implemented by network controllers installed locally at
each virtualized computing center available in the cloud. Local network controllers will
establish the request volumes served by the local infrastructure, the set of VMs ex-
ecuted by each server, the request volumes at the various servers, and the capacity
devoted for the execution of each VM at each server. Network controllers might also
decide to turn servers on or off depending on the system load or to reduce the fre-
quency of operation of servers enabled by the Dynamic Voltage and Frequency Scaling
(DFVS) mechanisms implemented in modern servers.

A model-driven approach will be adopted enabling performance prediction both at
system design and deployment time as well as during system operation. The goal
will be to continuously optimize the system resource and energy efficiency during op-
eration by automatically reconfiguring resource allocations in response to changes in
application workloads. To enforce quality-of-service requirements, system performance
models developed at design time and augmented with monitoring data collected during
operation will be used at run-time to predict the effect of dynamic changes in the system
configuration. Some examples of such changes include: changing the amount of CPU
time allocated to VMs, pausing or resuming VMs, suspending or restoring VMs, migrat-
ing VMs from one physical machine to another, shutting down or launching physical
machines, etc.
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The specific goals that will be pursued are listed below:

• Extend existing performance meta-models for component-based software archi-
tectures (e.g., [10]) to support modeling applications running in cloud computing
environments. In particular, new modeling constructs should be introduced for
describing virtualized system resources (e.g., servers, CPUs, main memory) and
capturing their mapping to physical resources. Performance models should be
structured around the system components (hardware and software) involved in
processing service requests and should be parameterized to capture dependen-
cies on the service execution context, e.g., usage profile, connections to external
services, resource allocations, and middleware configuration parameters.

• Develop meta-models for capturing the energy efficiency of virtualized data center
infrastructures taking into account the resource allocations of individual hosted
applications as well as the utilization of system resources.

• Develop efficient analysis techniques for solving instances of the meta-models
developed as part of (1) and (2). The analysis techniques should provide flexibility
in trading-off between analysis overhead and solution accuracy.

• Develop methods and tools for automatic model maintenance during operation
through continuous monitoring of the service infrastructure. Both instances of the
performance models developed as part of (1) and instances of the energy models
developed as part of (2) should be continuously refined and calibrated during
operation.

• Develop efficient techniques for self-adaptive system reconfiguration at run-time
to reflect dynamic changes in application workloads. The goal is to continuously
optimize the energy efficiency of the data center infrastructure while at the same
time ensuring that application performance requirements are continuously satis-
fied.

2.3.3 Research Questions and Challenges

• Can design-time performance prediction techniques be simplified and adapted so
that they can be used for performance prediction at run-time?

• At what level of abstraction should services and infrastructure components in a
cloud computing environment be modeled to enable predictability at run-time?

• What model solution techniques are suitable for performance prediction at run-
time providing a good trade-off between prediction accuracy and overhead?
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• What time-scales are reasonable to apply the various online reconfiguration
mechanisms?

• What workload forecasting techniques are appropriate to model the evolution of
complex workloads composed of multiple usage profiles of independent applica-
tions running on a shared physical infrastructure?

• What utility functions are suitable to evaluate the quality of alternative system
configurations in terms of their performance and energy efficiency?

• At what level of granularity should application workloads and system components
be monitored at run-time in order to detect changes in workloads and operating
conditions early enough to be able to proactively adapt the system configuration
accordingly while minimizing the monitoring overhead?
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2.4 Privacy in Service-Oriented Computing

2.4.1 Privacy Problems Introduced through Service Orientation

Due to its advantages, cloud computing will replace traditional computing in many fields.
Clients will not need to maintain a costly computing center and obtain software and
computing resources as a Service. Buyya et al. even call Cloud Computing the fifth
utility (after water, electricity, gas, and telephony) [16].

Despite the benefits Service orientation has to offer, there are inherent privacy prob-
lems. By using services, clients lose control over their data. They can not control if their
data gets copied or misused on the server and have to trust the Service provider. Cur-
rent security mechanisms focus on protecting the data from external adversaries, for
example an adversary eavesdropping data transfer between the client and the service.
The threat of insider attacks persists. Consider for example a system administrator who
copies the data stored on the server(s) in order to sell it to a third party. To ensure trust
into services we have to protect the data from internal adversaries, too.

Securing a pure storage service is easy. Encrypting the data before uploading it to
the server provides a sufficient level of protection, depending on the encryption used.
However, in most cases, this prevents the server from performing any meaningful op-
eration on the data. Hence, more complex services require advanced techniques for
providing privacy.

Cryptographic methods like secure multiparty computation [37, 18] or private informa-
tion retrieval [32] offer strong privacy guarantees and can solve many privacy problems.
Especially since a fully homomorphic encryption method [33] was discovered in 2009
which allows calculations on encrypted data. These methods offer strong security guar-
antees. For example fully homomorphic encryption allows to build services where the
service provider does not learn anything about the user input. However, due to high
communication and computation costs, these methods are not practical and their costs
outweigh all benefits of outsourcing software or data. Moreover, on principle it is impos-
sible to provide strong classical cryptographic guarantees for all services that involve
more than one user [86].

Nevertheless, to ensure trust into Services, we need methods that provide privacy
guarantees. Since achieving classical cryptographic guarantees is infeasible in most
cases, these guarantees have to be weaker, yet provide a sufficient level of protection.
Moreover, to be accepted broadly the privacy guarantees must be easy to understand.

2.4.2 State of the Art

Cryptography offers methods with strong security guarantees for scenarios involving
different parties while one or more party is not fully trusted. There are methods for
different security models [85, 26, 56].
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It is possible to apply these methods to services in order to enhance privacy. How-
ever, due to their complexity they cancel the benefits of outsourcing, in most cases.
Since most services rely on databases, there is much literature to the problem of se-
cure database outsourcing. However, all of the proposed approaches have drawbacks.
Most of them lack a formalization of the level of privacy provided. In the remainder of
this section, we discuss the methods originated from cryptography as well as the rather
practical approaches of the database community.

There are cryptographic solutions for two or more parties cooperatively computing a
certain function over a set of data without any party learning anything about the input
of other parties except what is learned by the output. Using an interactive protocol,
these secure multiparty computations [37, 18] can thus solve all computation related
privacy problems. The problem is that for each party, the computation cost is higher
than computing the whole function on the complete input without any other party. This
makes the concept of multiparty computation for outsourcing services too expensive
and in fact pointless if the client is the only one with private input.

There are encryption schemes that produce ciphertexts with homomorphic proper-
ties: consider for example Textbook-RSA [77]. Multiplying two ciphertexts and decrypt-
ing the result yields the same result as decrypting the two ciphertexts and multiplying
the plaintexts. However, Textbook-RSA is not considered as secure [14] and only sup-
ports homomorphic multiplication. For many years the existence of a fully homomorphic
encryption scheme that supports addition as well as multiplication was unclear. In 2009,
Craig Gentry discovered such a fully homomorphic encryption scheme [33]. This theo-
retically solves our privacy problem for services involving only one user: the client could
simply use the proposed encryption scheme, and the service provider could adapt its
service to work on encrypted data using this scheme. However, this is not feasible since
the size of the key scales with the size of the circuit of the algorithm which the service
calculates.

Cryptography offers a method to retrieve information from an outsourced database
without the server learning anything about the information queried [32]. This is a special
case of oblivious transfer [84]. However, these methods are also infeasible in most
cases: If the database server must not learn anything about a query, the query issued
to the database must contain every cell. Otherwise the server learns which cells do not
contribute to the result of the query, and thus learns something about the result set, if
no special-purpose hardware is involved [51]. The need to iterate over every cell for
every query execution makes private information retrieval impractical in most cases.

In contrast to the rather theoretical methods introduced above, the database com-
munity came up with many practical approaches for secure database outsourcing. The
concept of Database as a Service was introduced by Hacigümüs et al. in 2002 [39].
They propose to use encryption to enhance privacy and evaluate several different ways
to encrypt data in a database. However, the user has to hand the encryption key to
the server for query processing. This is a security risk in an untrusted server scenario.
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Since then the privacy aspects of this concept and the problem of a searchable encryp-
tion got much attention. Most of the proposed schemes either rely either on separating
the database [3] or on creating additional index tables to enable execution of SQL over
encrypted data [38]. Most of these approaches have in common that they propose a
particular architecture for the database service. Although different schemes have been
examined extensively, it is either unclear what level of privacy they provide [22, 17, 45],
or they have restricting assumptions about the input data [5, 11], or they rely on special
hardware [51].

In order to give security guarantees, one has to specify the security model in which
the guarentees hold. The security model is an abstraction from reality

2.4.3 Goals and Approach

A major aim of this project is the development of novel methods that provide provable
privacy guarantees, yet are efficient enough to be used in a service scenario. In general,
these privacy guarantees have to be weaker than classical cryptographic notions, but
provide a sufficient level of protection.

Combinations of architectural and cryptographic approaches (c.f. Section 2.4.2) is a
promising direction. In [43] we proposed a separations of duties that can be used to
enhance the privacy of services. In [46] a further discussion of separations of duties
can be found. We want to study what level of privacy can be provided practically using
combinations of architectural and cryptographic approaches. This leads to a deeper
understanding of how services can be adapted to achieve certain privacy guarantees.

In order to enhance the privacy of services we need to understand methods that
intuitively enhance privacy. We already discussed separating services. Consider as
another example a database service that should not learn the client’s queries. Private
information retrieval schemes suggest to query all cells of the database. As already
discussed, this does not scale. Adding dummy queries to the real one intuitively en-
hances privacy. However, it is not clear what level of privacy can be provided using a
small amount of dummy queries. For example in order to hide a distribution of queries
dummy queries can be inserted. However, some information may still leak, since trans-
forming a distribution into another arbitrary distribution may be to expensive or even
impossible (i. e. infinite number of elements in the query language). We want to exam-
ine how dummy queries and dummy data can enhance privacy, how they have to look
like, and how they can be generated. This can lead to private information retrieval as
well as data storage schemes that provide weaker privacy guarantees than classical
schemes but are practical.

To provide security guarantees, we need formalizations of the provided level of pri-
vacy. On the one hand, these formalizations have to be weaker than classical cryp-
tographic notions, to achieve feasibility. On the other hand, they have to comprise a
sufficient level of privacy. Thus, in contrast to classical notions, these new formaliza-
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tions are focused on practicability and may incorporate assumptions about hardware
(i. e. the presence of trusted or secure hardware). We already formulated a novel secu-
rity notion for outsourced databases, k-IND-ICP [43]. Informally, this notion describes
that relations between attribute values must not leak. We showed the feasibility of a
outsourced database that fulfills this notion. However, depending on the requirements
of the client, this notion may be unsuitable. Therefore, we need further practical secu-
rity notions that can be adjusted to different protection requirements. This may led to
fulfillable formalizations of privacy requirements that can be used in practical Software
as a Service environments.

2.4.4 Research Questions

We have identified the following challenges:

• Security guarantees

– What can practical security guarantees that can be used in a Software as a
Service scenario look like?

– What are achievable protection requirements?
– How can they be formalized in order to prove the level of privacy a service

provides?

• Realization

– How can security guaranties achieved practically?
– How can architectural and cryptographic approaches be combined in order

to enhance privacy?
– Are there architectures that favor the realization of privacy guarantees?
– Can reasonable assumptions about hardware (TPM, USB smart cards) be

used to achieve a certain level of privacy that could not be achieved other-
wise?

– How can services be adapted to achieve certain privacy guarantees?
– What privacy guarantees can be provided for data in services using standard

techniques?
– How can these techniques be combined efficiently?
– How can the level of privacy not well understood methods provide be formu-

lated?
– What privacy guarantees can be achieved using dummy data or dummy

queries?
– How can dummy queries and dummy data be generated in order to achieve

the best possible practical level of privacy?
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2.5 Distributed Data Usage

The different layers of the cloud, including network, infrastructure, services, and ap-
plications, do and will host an abundance of data. Generalizing the observations on
privacy in Section 2.4, in many cases, providers of this data have a vested interest in
controlling or at least observing both the flow of this data through the cloud and the
usage of this data once it has been given away. One part of the security architecture
of future clouds hence appears likely to provide abstractions and mechanisms for con-
trolling usage and dissemination of data in a distributed, heterogeneous, dynamically
changing system.

Today’s cloud computing infrastructures usually require customers who transfer data
into the cloud to trust the providers of the cloud infrastructure. This trust extends to both
confidentiality and integrity of the data. Depending on the value of the data, however,
not every customer is willing to grant this trust without any justification.

Companies with strict data protection policies miss transparency and security guar-
antees of the cloud infrastructures. Moreover, they are unable to determine where their
data is stored, or do not understand how the cloud infrastructure is managed. This lack
of transparency makes potential costumers of cloud infrastructures refrain from using
the cloud, since their data assets have great value and they can not quantify the risk
with respect to unauthorized access.

One common approach in service level agreements of (cloud) infrastructure providers
to improve data protection is encryption of virtual hard disks and network traffic. How-
ever, this approach does not guarantee data protection from malicious or negligent
infrastructure providers. Providers have full control of the cloud infrastructure, and are
able to configure or modify it in a way that allows them access to the data at any mo-
ment.

Thus, in current cloud computing scenarios, service providers have no alternative
to trusting infrastructure providers to keep their data secure, and there is no way to
verify the integrity of the cloud’s hardware/software configuration. Furthermore, the
specification of data protection guarantees in existing cloud service level agreements
is done on a best effort basis. Service providers are not given any guarantees in case
data is released maliciously or accidentally to unauthorized parties.

Existing cloud infrastructures use virtualization techniques using hypervisors (e.g.,
the Xen Cloud Platform) to transparently allocate resources of physical hosts for a ser-
vice provider’s virtual machines. In theory, security in virtualization solutions is provided
by design. This is because virtual machines are completely isolated from one another
by the hypervisor. In practice, cloud administrators are still able to load a malicious
hypervisor module and access the memory and disk content of the service provider’s
virtual machines. Furthermore, existing cloud infrastructure customers do not know
who has physical or virtual access to their data by using, say, remote management
tools. Therefore, malicious infrastructure providers or one of their internal administra-
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tors could manipulate the infrastructure to steal or modify the customers’ data for their
own benefit.

We plan to provide a framework for data-driven usage control in the cloud, i.e., the
extension of usage control by data flow detection concepts. We want to enforce usage
control properties, or at least detect their violation, not for one precisely specified ob-
ject (one specific data container), but rather for all representations of the data, i.e., all
containers that actually or potentially contain the respective object. If a policy stipulates
that a data object be deleted within thirty days, then we want to be able to delete all
copies, or representations, of that object as well. These representations exist at differ-
ent levels of abstraction: as objects in a runtime system such as a Java VM, as window
content, as file content, as network packets, etc. Data flow must be tracked within each
and across different levels of abstraction, and usage control must accordingly be per-
formed at different levels simultaneously. From this perspective, a second IT system in
the cloud is simply one further level of abstraction in itself. Distributed usage control is
hence subsumed by this approach.

In the following, we describe how the necessary trust can be enabled. We will con-
centrate on two problems. One is concerned with software that runs on a cloud infras-
tructure and that makes it possible to control (or at least detect) the flow of data through
a system. The second problem is concerned with securing the integrity of a cloud in-
frastructure’s software and hardware. In order to solve the problem of distributed data
usage in the cloud, we propose to secure the second class of systems with the first
class of systems.

2.5.1 State of the Art

Enforcement Mechanisms Enforcement mechanisms for requirements such as
“delete after thirty days,” “do not copy,” “notify me when giving away,” “at most three
copies,” etc., have, for a variety of policy languages [27, 1, 6, 65, 94, 44, 23, 88], been
implemented at single layers of abstraction: at the operating system level [40, 47, 75],
at the X11 level [69], for Java [21, 48], the .NET CIL [24] and machine languages
[29, 19, 92]; workflow systems [7]; service-oriented architectures [4]; the level of an
enterprise service bus [34]; for dedicated applications such as the Internet Explorer
[28] or in the context of digital rights management [2, 62, 73]. From a slightly different
perspective, comparable monitors are also investigated in grids where resources are
dynamically assigned and freed, and they are considered in the domain of intrusion
detection systems.

The reason for this variety of enforcement mechanisms is that the data that has to
be protected comes in different representations: as network packets, as attributes in
an object, as window content, etc. In principle, all these representations eventually boil
down to some representation in memory, but it turns out to be more convenient and
simpler to perform protection at higher levels of abstraction. For instance, disabling the
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print command is easily done at the word processor level; taking screenshots is easily
inhibited at the X11 level; prohibiting dissemination via a network is most conveniently
performed at the operating system level; etc.

In sum, there is a plethora of solutions for different layers of abstraction, but there is
neither integration nor protection of these solutions.

Securing the Cloud Current research approaches for cloud security mainly focus on
either (I) the service providers’ VMs or (II) the host system. In the former area, integrity
measurements are performed using the cloud infrastructure’s support (e.g. hypervisor).
The cloud infrastructure itself is not verified in these approaches. In the latter area, re-
search tends to focuses on the integrity measurement of host machines mostly utilizing
the trusted platform module [83] to do attestations.

In terms of category I, the work of Schiffman et al. [80] describes a system for integrity
measurements of virtual machines running inside a distributed system. In this work, the
trustworthiness of the machines only depends on the input given to the virtual machines
for processing, not on actions taken on the physical host. Thus, the possibility of a
malicious insider modifying the physical host is not catered to. Quynh and Takefuji
[76] describe a real-time integrity monitor for Xen virtual machines. They describe
which functions current file system integrity tools are lacking and how they improved
this using a real-time monitor. They assume that Dom0 is out of reach of an attacker
and thus store all information there to enable ”violation reporting.” Jansen et al. [50]
present a solution to the problem of attesting virtual machines by deploying security
services in Dom0. This enables the secure creation and execution of virtual machines,
including the ability to attest the virtual machine at runtime. An essential part of the
solution is the TPM, which enables secure storage of security policies in Dom0.

In terms of category II, the work of Santos et al. [64] is on integrity measurements and
attestation of physical hosts that run virtualization software. Attestations are performed
when a virtual machine is migrated from/to other physical hosts. They then represent
a snapshot of the system at the time of migration. Using this approach, the problem of
migrating to an untrusted physical host is solved because all physical hosts migrated
from/to are trustworthy at the point of migration. This work is based on Terra [31] which
enables the attestation of the physical host itself when demanded by using a trusted
virtual machine monitor (TVMM) as hypervisor. Using TPM functionality, the TVMM
provides isolation and separation of the virtual machines as well as an additional sealed
storage of the attestation values. Thus the hypervisor has the responsibility to provide
the hardware level attestations of the system in a trusted way to software running in one
of the virtual machines.

Neisse et al. [63] have taken these ideas one step further and presented a system
that allows to detect, both at boot time and at runtime, changes to crucial system files,
including hypervisors, kernel, kernel modules, configuration files, etc.
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Moreover, there has been work on an Integrity Measurement Architecture (IMA) [79]
and on the virtualization of TPM devices (vTPMs) [12]. IMA guarantees the integrity
of all loaded system components including kernel, kernel modules, system libraries,
etc., by checking them at boot time, therefore providing an early establishment of trust.
There are however no further measurements after the initial one. The work in vTPMs
focuses on providing virtual TPM devices for virtualization customers that share a single
physical host and do not want to share the real TPM with a different objective than the
work described in this paper.

From a commercial perspective, some companies have published studies that indi-
cate their intent to follow a similar direction as we have done to enable trust in cloud
infrastructures. Intel, VMWare and RSA announced [20] that they are collaborating to
build a system to measure and monitor cloud infrastructure security. This system uses
the Intel Trusted Execution Technology CPU extension, RSA software components to
collect the data, a dashboard for security evaluation, and a component developed by
RSA to prevent data loss. The system is called Data Loss Prevention Enterprise Man-
ager. The cited report does not contain further details about the product being devel-
oped.

2.5.2 Goals and Approach

The general problem of distributed data usage control [67, 70] is concerned with the
problem of how to manage data once it has been given away. Application domains
include privacy, compliance with regulations, data management in distributed business
processes, digital rights management, eGovernment, the management of intellectual
property and, in general, that of secrets. Typical requirements include “don’t dissem-
inate,” “notify me when giving away my data,” “delete after thirty days,” “don’t delete
within five years,” etc. The more distributed a system is, the more complex the chal-
lenge becomes. We are convinced that any cloud technology needs support and built-
in approaches to provide mechanisms for the enforcement of distributed usage control
policies both at the service and the infrastructure levels. Our approach is hence to (1)
have enforcement mechanisms that also cater to cross-layer data flows at different lev-
els of abstraction within one single and in-between different IT system; and (2) secure
these enforcement mechanisms in the different IT systems using trusted computing
technology (which seems to be the least bad of today’s available solutions).

Preventive and Detective Enforcement Usage control policies such as “no non-
anonymized data may leave this service,” “notify owner upon dissemination,” “this data
may not be sent to an advertisement server,” “don’t distributed to a call center” can
be enforced both by detection and by prevention. Detective enforcement means that
policy violations are merely detected at runtime or upon forensic analysis: no precau-
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tions are taken to ensure policies are adhered to. This approach is motivated by the
underlying trust model; available technology; the unforeseen consequences of interact-
ing with the controlled system when inhibiting rather than observing actions; cost and
practicality considerations. In contrast, preventive enforcement aims at ensuring that
policies are adhered to. Classical DRM systems are the most popular instance of this
enforcement paradigm; whether or not “they work” is out of the scope of this report.
Preventive enforcement can be done by inhibition (blocking requests or dropping mes-
sages), by modification (replace name and birth date fields by empty strings to the end
of anonymization), and by execution (send email notification) [58, 72, 71]. The decision
on which kind of preventive enforcement is up to the user. This is because there is
usually not “the right way,” but rather many right ways. Whether or not preventive or
detective enforcement is chosen in a particular case depends on the business model,
the trust model, and available technology.

Layers of abstraction When processed by an IT system, data resides, vertically, at
different layers of abstraction. At a technical level, these layers include that of the pro-
cessor and the memory management itself (the system to be controlled is machine
code), that of the operating system, that of runtime systems such as .NET or Java
virtual machines, that of infrastructure applications such as window managers or file
systems, that of data base systems or workflow engines; but also that of networks,
desktop applications such as word processors, web services, etc. Depending on the
perspective, the same data hence exists, vertically, in different representations: as net-
work packet, memory cell, Java object, window content, file, data base record, text
document, etc. The enforcement of usage control policies could of course ultimately be
done exclusively at the lowest level, that of machine code. As it turns out, however, it
is often simpler to do this at higher levels of abstraction: copy& paste is conveniently
disabled at the level of a window manager or within a word processor; deletion of files
is conveniently managed at the operating system level; the sending of messages can
conveniently be managed within a service bus or a workflow engine. The reason is that
at the level of machine code, it is very hard to identify those parts of the code that are
concerned with these actions while natural abstractions exist at the other layers. All the
above layers exist, horizontally, in multiple forms when it comes to distributed systems
in the cloud. However, the horizontal dimension of the problem conceptually just gen-
eralizes the vertical dimension: solutions for the vertical dimension very likely directly
imply solutions for the horizontal dimension, the “distributed part” of the cloud. We are
convinced that data usage control, be it detective or preventive, must be performed si-
multaneously at many levels of abstraction and across different machines. There is a
huge body of work to leverage that we have described in Section 2.5.1.
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Data flow Since data exists in different representations, it is not sufficient to control
the usage of single representations of data. In addition, one must track the flow of data
through a system: on one single machine, if displaying a sensitive data item contained
in a file should be avoided, then it is necessary to vertically track the flow of information
(1) from the hard disk (2) to the in-memory representation when read by a process (3)
to the window manager (4) to the graphics device, thus encompassing many or all of the
above layers of abstraction. Analogously, in a distributed system such a smart energy
metering system, data flows horizontally from the (1) sensor to the energy provider’s
(2) backend, (3) billing system, and (4) statistics engine; and then (5) to call centers
and third party service providers. Each of these systems is then vertically structured as
mentioned above. The notion of information flow can be both possibilistic (some infor-
mation has flown) and quantitative; the former is theoretically desirable and appealing
but turns out to be practically less useful. This is because some information almost al-
ways flows. In any case, it is necessary to track the flow of information within one layer
(e.g., files are copied), across layers (e.g., a file is read by a process), and in-between
different networked systems. We are convinced that usage control in the cloud is im-
possible if these different layers of abstraction and the different representations of data
both within on single IT system (vertical axis) and on several distinct IT systems (hori-
zontal axis, including embedded devices in the internet of things) are not considered. If
usage control policies are to be enforced, any architecture of future clouds must provide
abstractions for these fundamental concepts in both dimensions.

2.5.3 Research Questions and Challenges

Roughly, we consider the major challenges in this context to include three problem
domains that intensely interact one with the other.

Requirements and specification of policies Usage control policies - at different
levels of granularity - need to address data, data representations, actions on data or
representations, and, related, different systems or services on which the data repre-
sentations are stored. For instance, profile data in a social network may come as data
base record, file, or Java object. It may be stored in file servers, backup servers, web
servers, billing systems, etc. While we believe that it is reasonable to assume that the
overall number of data representations is finite and not too large, a particular difficulty
is given by the fact that the number of possible representations within one system is
not fixed because this system will, by interacting with other systems, change. Existing
policy languages [27, 1, 6, 65, 94, 44, 23, 88] must be extended so that they are at
the same time simple enough so that end-users can understand them, and expressive
enough so that possible representations of data in different systems can be addressed.
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Enforcement of policies Once policies have been specified, they need to be en-
forced at the different levels of abstraction, both vertically within one system and hori-
zontally across different systems . This implies the existence of security monitors that
(1) track the flow of data through the system and (2) monitor the actions exercised on
the different representations of this data, as described in Section 2.5.1. In terms of
preventive enforcement, some special care must be taken as far as the robustness of
systems is concerned: today’s applications usually crash when, for instance, specific
system calls return an error code without being executed.

Vertically, we need to connect these different levels, which turns out to be a difficult
problem: how do a browser and an operating system know that the image rendered on
a screen and stored in, say, a C data structure in the browser is the same as a cache file
on the hard disk? Conceptually, the obvious approach is to implement this by means
of a bus system with plenty of consequences for performance and security; technically,
this turns out to be less than trivial in the general case.

Horizontally, across multiple machines, we need to build a similar bus that maintains
the knowledge that several data representations belong to the same piece of data.
We would like to stress here that without securing the vertical dimension, securing
only the horizontal dimension is a somewhat futile endeavor. The distributed nature of
the cloud then requires, in addition to enforcement proper, solutions for policy lifecycle
management, deployment, and the like.

Guarantees and certification When enforcement mechanisms are built, it is neces-
sary to (1) constructively make sure that they provide specific guarantees, and to (2)
analytically provide evidence to potential users of the system that is equipped with these
enforcement mechanisms. Before giving away data, users should be given the possi-
bility to make sure that a specific mechanism is in place and has not been tampered
with. Moreover, beyond today’s SLAs or CC certifications, users should be given the
possibility to check if a service or a subsystem they plan to use, actually does what it
is supposed (or advertised) to do, and to not do what it is not supposed to do. Along
the constructive dimension, we believe that work in the area of trusted computing is
a promising candidates, even though there is a variety of unsolved problems (taking
TPM ownership; managing updates; loss of keys; etc.). Along the analytical dimension,
we believe that in addition to static analysis techniques, it is necessary to conceive
and implement dynamic sampling approaches, including testing, that allow for remote
quantitative assessments of systems in the cloud.

26



References

3 Conclusions

In this paper, we presented challenges and opportunities of Cloud Computing tech-
nology. Such challenges and opportunities deal with the availability or performance of
software running in the cloud, as well as privacy and data control. For these research
fields, we highlighted the current state of the art, and presented approaches to mitigate
the open problems.

We argue that Cloud Computing introduces new trade-off decisions in the context
of quality-driven software service architectures. These decisions include trade-offs
between service quality attributes, such as availability, distributed data consistency,
service runtime performance, and privacy. We envision a structured decision support
framework for cloud-based architectures that explicitly addresses these trade-offs.
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