15 research outputs found

    Towards a comprehensive estimate of national spending on prevention

    Get PDF
    Background Comprehensive information about national spending on prevention is crucial for health policy development and evaluation. This study provides a comprehensive overview of prevention spending in the Netherlands, including those activities beyond the national health accounts. Methods National spending on health-related primary and secondary preventive activities was examined by funding source with the use of national statistics, government reports, sector reports, and data from individual health associations and corporations, public services, occupational health services, and personal prevention. Costs were broken down by diseases, age groups and gender using population-attributable risks and other key variables. Results Total expenditures on prevention were €12.5 billion or €769 per capita in the Netherlands in 2003, of which 20% was included in the national health accounts. 82% was spent on health protection, 16% on disease prevention, and 2% on health promotion activities. Most of the spending was aimed at the prevention of infectious diseases (34%) and acute physical injuries (29%). Per capita spending on prevention increased steeply by age. Conclusion Total expenditure on health-related prevention is much higher than normally reported due to the inclusion of health protection activities beyond the national health accounts. The allocative efficiency of prevention spending, particularly the high costs of health protection and the low costs of health promotion activities, should be addressed with information on their relative cost effectiveness

    Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer.

    Get PDF
    Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution.Wellcome Trust Investigator Award, 102942/Z/13/A Elizabeth P Murchison Leverhulme Trust Philip Leverhulme Prize Elizabeth P Murchison Royal Society Research Grant, RG130615 Elizabeth P Murchiso

    Somatic evolution and global expansion of an ancient transmissible cancer lineage

    Get PDF
    Made available in DSpace on 2019-10-06T15:53:36Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-08-02GPD Charitable TrustLeverhulme TrustThe canine transmissible venereal tumor (CTVT) is a cancer lineage that arose several millennia ago and survives by “metastasizing” between hosts through cell transfer. The somatic mutations in this cancer record its phylogeography and evolutionary history. We constructed a time-resolved phylogeny from 546 CTVT exomes and describe the lineage's worldwide expansion. Examining variation in mutational exposure, we identify a highly context-specific mutational process that operated early in the cancer's evolution but subsequently vanished, correlate ultraviolet-light mutagenesis with tumor latitude, and describe tumors with heritable hyperactivity of an endogenous mutational process. CTVT displays little evidence of ongoing positive selection, and negative selection is detectable only in essential genes. We illustrate how long-lived clonal organisms capture changing mutagenic environments, and reveal that neutral genetic drift is the dominant feature of long-term cancer evolution.Transmissible Cancer Group Department of Veterinary Medicine University of CambridgeAnimal Management in Rural and Remote Indigenous Communities (AMRRIC)World VetsAnimal Shelter Stichting Dierenbescherming SurinameSikkim Anti-Rabies and Animal Health Programme Department of Animal Husbandry Livestock Fisheries and Veterinary Services Government of SikkimRoyal (Dick) School of Veterinary Studies Roslin Institute University of Edinburgh Easter Bush CampusConserLab Animal Preventive Medicine Department Faculty of Animal and Veterinary Sciences University of ChileCorozal Veterinary Hospital University of PanamáSt. George's UniversityNakuru District Veterinary Scheme LtdAnimal Medical CentreInternational Animal Welfare Training Institute UC Davis School of Veterinary MedicineCentro Universitário de Rio Preto (UNIRP)Department of Clinical and Veterinary Surgery São Paulo State University (UNESP)Ladybrand Animal ClinicVeterinary Clinic Sr. Dog'sWorld Vets Latin America Veterinary Training CenterNational Veterinary Research InstituteAnimal ClinicIntermunicipal Stray Animals Care Centre (DIKEPAZ)Animal Protection Society of SamoaFaculty of Veterinary Science University of ZuliaVeterinary Clinic BIOCONTROLFaculty of Veterinary Medicine School of Health Sciences University of ThessalyVeterinary Clinic El Roble Animal Healthcare Network Faculty of Animal and Veterinary Sciences University of ChileOnevetGroup Hospital Veterinário BernaUniversidade Vila VelhaVeterinary Clinic ZoovetservisÉcole Inter-états des Sciences et Médecine Vétérinaires de DakarDepartment of Small Animal Medicine Faculty of Veterinary Medicine Utrecht UniversityVetexpert Veterinary GroupVeterinary Clinic Lopez QuintanaClinique Veterinaire de Grand Fond Saint Gilles les BainsDepartment of Veterinary Sciences University of MessinaFacultad de Medicina Veterinaria y Zootecnia Universidad Autónoma del Estado de MéxicoSchool of Veterinary Medicine Universidad de las AméricasCancer Development and Innate Immune Evasion Lab Champalimaud Center for the UnknownTouray and Meyer Vet ClinicHillside Animal HospitalKampala Veterinary SurgeryAsavet Veterinary CharitiesVets Beyond BordersFaculty of Veterinary Medicine Autonomous University of YucatanLaboratorio de Patología Veterinaria Universidad de CaldasInterdisciplinary Centre of Research in Animal Health (CIISA) Faculty of Veterinary Medicine University of LisbonFour Paws InternationalHelp in SufferingVeterinary Clinic Dr José RojasDepartment of Biotechnology Balochistan University of Information Technology Engineering and Management SciencesCorozal Veterinary ClinicVeterinary Clinic VetmasterState Hospital of Veterinary MedicineJomo Kenyatta University of Agriculture and TechnologyLaboratory of Biomedicine and Regenerative Medicine Department of Clinical Sciences Faculty of Animal and Veterinary Sciences University of ChileFaculty of Veterinary and Agricultural Sciences University of MelbourneAnimal Anti Cruelty LeagueClinical Sciences Department Faculty of Veterinary Medicine BucharestDepartment of Pathology Faculty of Veterinary Medicine Ankara UniversityFaculty of Veterinary Sciences National University of AsuncionLilongwe Society for Protection and Care of Animals (LSPCA)Wellcome Sanger InstituteDepartment of Cellular and Molecular Medicine University of California San DiegoDepartment of Clinical and Veterinary Surgery São Paulo State University (UNESP)Leverhulme Trust: 102942/Z/13/

    Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer

    Get PDF
    Abstract: Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for ‘selfish’ traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby ‘selfish’ positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells

    Exposição múltipla a agrotóxicos e efeitos à saúde: estudo transversal em amostra de 102 trabalhadores rurais, Nova Friburgo, RJ Multiple exposure to pesticides and impacts on health: a cross-section study of 102 rural workers, Nova Friburgo, Rio de Janeiro State, Brazil

    No full text
    Um estudo transversal foi realizado em uma comunidade agrícola localizada em Nova Friburgo, RJ, para conhecer os aspectos epidemiológicos, clínicos e laboratoriais da exposição múltipla a agrotóxicos em uma amostra representativa de 102 pequenos agricultores, de ambos os sexos. Os trabalhadores foram submetidos a um extenso protocolo que incluía aplicação de questionário ocupacional, coleta de amostras biológicas para exame toxicológico e avaliação clínica - geral e neurológica. Os resultados dos exames toxicológicos revelaram episódios leves a moderados de intoxicação aguda aos organofosforados descritos pelos agricultores ou observados durante o exame clínico. Foram também diagnosticados 13 (12,8 %) quadros de neuropatia tardia e 29 (28,5%) quadros de síndrome neurocomportamental e distúrbios neuropsiquiátricos associados ao uso crônico de agrotóxicos. Os resultados apontam para a ocorrência de episódios recorrentes de sobre-exposição múltipla, a elevadas concentrações de diversos produtos químicos, com grave prejuízo para as funções vitais desses trabalhadores, especialmente por se encontrarem em uma faixa etária jovem (média = 35 &plusmn; 11anos) e período produtivo da vida. Estes dados demonstram a importância do monitoramento da múltipla exposição a agrotóxicos, uma cadeia de eventos de grande repercussão na saúde pública e para o meio ambiente.<br>A cross section study was carried out in a farming community from Nova Friburgo, Rio de Janeiro state, Brazil, to examine epidemiological, clinical and laboratory aspects of multiple exposure to pesticides in a representative sample of 102 small farmers. Both males and females were submitted to an extensive protocol which included an occupation questionnaire, biological sample collection for toxicology analysis and clinical - general and neurological - evaluation. The toxicology test results showed light to moderate episodes of acute intoxication by organophosphorates either described by the farmers or observed during clinical examination. Thirteen cases of delayed neuropathies (12,8%) as well as 29 cases of neural behavioral syndromes and psychiatric disorders associated to the continued use of pesticides were diagnosed. These results indicate recurrent multiple overexposures to high concentrations of different chemicals, with serious damage to vital functions, especially considering their young age (average 35 &plusmn; 11 years old) and the productive period in their lifetime. These results show how important it is to monitor multiple exposure to pesticides - a chain of events that may have major impacts on public health and the environment

    Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer.

    No full text
    Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution
    corecore