23 research outputs found

    DBRepo: a Semantic Digital Repository for Relational Databases

    Get PDF
    Data curation is a complex, multi-faceted task. While dedicated data stewards are starting to take care of these activities in close collaboration with researchers for many types of (usually file-based) data in many institutions, this is rarely yet the case for data held in relational databases. Beyond large-scale infrastructures hosting e.g. climate or genome data, researchers usually have to create, build and maintain their database, care about security patches, and feed data into it in order to use it in their research. Data curation, if at all, usually happens after a project is finished, when data may be exported for digital preservation into file repository systems. We present DBRepo, a semantic digital repository for relational databases in a private cloud setting designed to (1) host research data stored in relational databases right from the beginning of a research project, (2) provide separation of concerns, allowing the researchers to focus on the domain aspects of the data and their work while bringing in experts to handle classic data management tasks, (3) improve findability, accessibility and reusability by offering semantic mapping of metadata attributes, and (4) focus on reproducibility in dynamically evolving data by supporting versioning and precise identification/cite-ability for arbitrary subsets of data.&nbsp

    Morphological and dietary responses of chipmunks to a century of climate change.

    Get PDF
    Predicting how individual taxa will respond to climatic change is challenging, in part because the impacts of environmental conditions can vary markedly, even among closely related species. Studies of chipmunks (Tamias spp.) in Yosemite National Park provide an important opportunity to explore the reasons for this variation in response. While the alpine chipmunk (T. alpinus) has undergone a significant elevational range contraction over the past century, the congeneric and partially sympatric lodgepole chipmunk (T. speciosus) has not experienced an elevational range shift during this period. As a first step toward identifying the factors underlying this difference in response, we examined evidence for dietary changes and changes in cranial morphology in these species over the past century. Stable isotope analyses of fur samples from modern and historical museum specimens of these species collected at the same localities indicated that signatures of dietary change were more pronounced in T. alpinus, although diet breadth did not differ consistently between the study species. Morphometric analyses of crania from these specimens revealed significant changes in cranial shape for T. alpinus, with less pronounced changes in shape for T. speciosus; evidence of selection on skull morphology was detected for T. alpinus, but not for T. speciosus. These results are consistent with growing evidence that T. alpinus is generally more responsive to environmental change than T. speciosus, but emphasize the complex and often geographically variable nature of such responses. Accordingly, future studies that make use of the taxonomically and spatially integrative approach employed here may prove particularly informative regarding relationships between environmental conditions, range changes, and patterns of phenotypic variation

    Preliminary Results for the Multi-Robot, Multi-Partner, Multi-Mission, Planetary Exploration Analogue Campaign on Mount Etna

    Get PDF
    This paper was initially intended to report on the outcome of the twice postponed demonstration mission of the ARCHES project. Due to the global COVID pandemic, it has been postponed from 2020, then 2021, to 2022. Nevertheless, the development of our concepts and integration has progressed rapidly, and some of the preliminary results are worthwhile to share with the community to drive the dialog on robotics planetary exploration strategies. This paper includes an overview of the planned 4-week campaign, as well as the vision and relevance of the missiontowards the planned official space missions. Furthermore, the cooperative aspect of the robotic teams, the scientific motivation, the sub task achievements are summarised

    Finally! Insights into the ARCHES Lunar Planetary Exploration Analogue Campaign on Etna in summer 2022

    Get PDF
    This paper summarises the first outcomes of the space demonstration mission of the ARCHES project which could have been performed this year from 13 june until 10 july on Italy’s Mt. Etna in Sicily. After the second postponement related to COVID from the initially for 2020 planed campaign, we are now very happy to report, that the whole campaign with more than 65 participants for four weeks has been successfully conduced. In this short overview paper, we will refer to all other publication here on IAC22. This paper includes an overview of the performed 4-week campaign and the achieved mission goals and first results but also share our findings on the organisational and planning aspects

    The ARCHES Space-Analogue Demonstration Mission: Towards Heterogeneous Teams of Autonomous Robots for Collaborative Scientific Sampling in Planetary Exploration

    Get PDF
    Teams of mobile robots will play a crucial role in future missions to explore the surfaces of extraterrestrial bodies. Setting up infrastructure and taking scientific samples are expensive tasks when operating in distant, challenging, and unknown environments. In contrast to current single-robot space missions, future heterogeneous robotic teams will increase efficiency via enhanced autonomy and parallelization, improve robustness via functional redundancy, as well as benefit from complementary capabilities of the individual robots. In this letter, we present our heterogeneous robotic team, consisting of flying and driving robots that we plan to deploy on scientific sampling demonstration missions at a Moon-analogue site on Mt. Etna, Sicily, Italy in 2021 as part of the ARCHES project. We describe the robots' individual capabilities and their roles in two mission scenarios. We then present components and experiments on important tasks therein: automated task planning, high-level mission control, spectral rock analysis, radio-based localization, collaborative multi-robot 6D SLAM in Moon-analogue and Mars-like scenarios, and demonstrations of autonomous sample return

    The ARCHES Space-Analogue Demonstration Mission: Towards Heterogeneous Teams of Autonomous Robots for Collaborative Scientific Sampling in Planetary Exploration

    Full text link
    © 2016 IEEE. Teams of mobile robots will play a crucial role in future missions to explore the surfaces of extraterrestrial bodies. Setting up infrastructure and taking scientific samples are expensive tasks when operating in distant, challenging, and unknown environments. In contrast to current single-robot space missions, future heterogeneous robotic teams will increase efficiency via enhanced autonomy and parallelization, improve robustness via functional redundancy, as well as benefit from complementary capabilities of the individual robots. In this letter, we present our heterogeneous robotic team, consisting of flying and driving robots that we plan to deploy on scientific sampling demonstration missions at a Moon-analogue site on Mt. Etna, Sicily, Italy in 2021 as part of the ARCHES project. We describe the robots' individual capabilities and their roles in two mission scenarios. We then present components and experiments on important tasks therein: automated task planning, high-level mission control, spectral rock analysis, radio-based localization, collaborative multi-robot 6D SLAM in Moon-analogue and Mars-like scenarios, and demonstrations of autonomous sample return
    corecore