3 research outputs found

    Effect of processing variables and bulk composition on the surface composition of spray dried powders of a model food system

    Get PDF
    Abstract The surface compositions of food powders created from spray drying solutions containing various ratios of sodium caseinate, maltodextrin and soya oil have been analysed by Electron Spectroscopy for Chemical Analysis. The results show significant enrichment of oil at the surface of particles compared to the bulk phase and, when the non-oil components only are considered, a significant surface enrichment of sodium caseinate also. The degree of surface enrichment of both oil and sodium caseinate was found to increase with decreasing bulk levels of the respective components. Surface enrichment of oil was also affected by processing conditions (emulsion drop size and drying temperature), but surface enrichment of sodium caseinate was relatively insensitive to these. The presence of "pock marks" on the particle surfaces strongly suggests that the surface oil was caused by rupturing of emulsion droplets at the surface as the surrounding matrix contracts and hardens

    Image analysis of palm oil crystallisation as observed by hot stage microscopy

    Get PDF
    This paper was accepted for publication in the journal Journal of Crystal Growth and the definitive published version is available at http://dx.doi.org/10.1016/j.jcrysgro.2016.03.026.An image processing algorithm previously used to analyse the crystallisation of a pure fat (tripalmitin) has been applied to the crystallisation of a multicomponent natural fat (palm oil). In contrast to tripalmitin, which produced circular crystals with a constant growth rate, palm oil produced speckled crystals caused by the inclusion of entrapped liquid, and growth rates gradually decreased with time. This can be explained by the depletion of crystallisable material in the liquid phase, whereas direct impingement of crystals (the basis of the Avrami equation) was less common. A theoretical analysis combining this depletion with assuming that the growth rate is proportional to the supersaturation of a crystallisable pseudo-component predicted a tanh function variation of radius with time. This was generally able to provide good fits to the growth curves. It was found that growth rate was a relatively mild function of temperature but also varied from crystal to crystal and even between different sides of the same crystal, which may be due to variations in composition within the liquid phase. Nucleation rates were confirmed to vary approximately exponentially with decreasing temperature, resulting in much greater numbers of crystals and a smaller final average crystal size at lower temperatures

    Formulation, stabilisation and encapsulation of bacteriophage for phage therapy

    Get PDF
    Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the human microbiota, there has been resurgent interest in the potential use of bacteriophages for therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical trials have concluded, and shown phages don’t present significant adverse safety concerns. These clinical trials used simple phage suspensions without any formulation and phage stability was of secondary concern. Phages have a limited stability in solution, and undergo a significant drop in phage titre during processing and storage which is unacceptable if phages are to become regulated pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal studies have shown the importance of using phage cocktails rather than single phage preparations to achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy outcomes, given the need for phage cocktails, where each phage within a cocktail may require significantly different formulation to retain a high enough infective dose. This review firstly looks at the clinical needs and challenges (informed through a review of key animal studies evaluating phage therapy) associated with treatment of acute and chronic infections and the drivers for phage encapsulation. An important driver for formulation and encapsulation is shelf life and storage of phage to ensure reproducible dosages. Other drivers include formulation of phage for encapsulation in micro- and nanoparticles for effective delivery, encapsulation in stimuli responsive systems for triggered controlled or sustained release at the targeted site of infection. Encapsulation of phage (e.g. in liposomes) may also be used to increase the circulation time of phage for treating systemic infections, for prophylactic treatment or to treat intracellular infections. We then proceed to document approaches used in the published literature on the formulation and stabilisation of phage for storage and encapsulation of bacteriophage in micro- and nanostructured materials using freeze drying (lyophilization), spray drying, in emulsions e.g. ointments, polymeric microparticles, nanoparticles and liposomes. As phage therapy moves forward towards Phase III clinical trials, the review concludes by looking at promising new approaches for micro- and nanoencapsulation of phages and how these may address gaps in the field
    corecore