327 research outputs found

    Studies of Ground Conductivity in the Territory of Alaska

    Get PDF
    The effective ground conductivity of Alaska has been determined by a comparison of experimental and theoretical field strengths. The experimental field strengths have been obtained by use of an airborne receiver, flown along radial paths from a large number of CAA radio ranges and beacons. The surface wave attenuation factor was computed for both a plane and a curved, homogeneous earth by methods presented by Norton. The experimentally determined relative field strengths were plotted as a function of distance and were compared with a family of curves for assumed values of conductivity and dielectric constant. From this comparison, that value of conductivity that best fits the experimental data is taken as the effective conductivity over the path. An investigation of the effect at dielectric constant on the transmitted signal shows that, within the frequency range used, a change of dielectric constant from 1 to 20 has but little effect on the attenuation of the transmitted signal for values of conductivity between 1 and 5 mmho/m. The experimental results indicate that for most sections of Alaska, the effective conductivity falls within this range. In some cases the earth was not homogeneous over the entire flight path as evidenced by changes in the slope of the field strength vs distance curves. In such cases, the data were replotted with an initial point at the discontinuity and new theoretical curves were drawn for each section of the field strength vs distance curves. Investigation of the variation of effective conductivity with change of frequency and at different seasons was made. In addition, wave tilt methods of determining the conductivity were used. A 'Ground Constants Measuring Set' was obtained from the Signal Corps and measurements were made in selected areas in Alaska. Attempts were made to use 1height-gain' and 'mutual coupling of loops' techniques but these were not successful. An investigation of anomolous propagation in the vicinity of Point Barrow was made. It was determined that this anomolous propagation appears to be the result of a layered earth. In addition to the anomolous propagation in the vicinity of Point Barrow, there appears to be similar anomolies in the vicinity of Kotzebue, Galena, Bethel and Port Heiden. From the above investigations a map showing the effective conductivity of Alaska as determined by the attenuation method is presented.Navy Department Bureau of Ships NObsr 72528 NE 120308 Subtask No. 6ABSTRACT -- PART I A. Purpose -- B. General Factual Data -- C. Detail Factual Data -- PART II -- A, Conclusions -- APPENDIX IYe

    Garn-St Germain: A Harbinger Of Change

    Full text link

    Female Voice Recognition Using Artificial Neural Networks and MATLAB Voicebox Toolbox

    Get PDF
    Voice and speaker recognition performances are measured based on the accuracy, speed and robustness. These three key performance indicators are primarily dependent on voice feature extraction method and voice recognition algorithm used. This paper aims to discuss various researches in speech recognition that has yielded high accuracy rates of 95% and above. The extracted MFCCs from MATLAB Voicebox toolbox were used as inputs to the multilayer Artificial Neural Networks (ANN) for female voice recognition algorithm. This study explored the recognition performance of the neural networks using variable number of hidden neurons and layers, and determine the architecture that would provide the optimum performance in terms of high recognition rate. MATLAB simulation resulted to a training and testing recognition rate of 100.00% when using 3-hidden-layer neural network from speech samples of a single-speaker, and highest training recognition rate of 98.11% and testing recognition rate of 87.20% when using 4-hidden-layer neural network from speech samples of several speakers. When tested with homonyms, the best recognition rate was 75.00% from a 3-hidden-layer neural network trained from a single-speaker, and 81.91% from a 4- hidden-layer neural network trained from multiple speakers. The deviation in recognition rates were primarily attributed to the variations made in the number of input neurons, hidden layers, and neurons of the speech recognition neural network

    Development of a new, combined rapid method using phage and PCR for detection and identification of viable Mycobacterium paratuberculosis bacteria within 48 hours

    Get PDF
    The FASTPlaqueTB assay is an established diagnostic aid for the rapid detection of Mycobacterium tuberculosis from human sputum samples. Using the FASTPlaqueTB assay reagents, viable Mycobacterium avium subsp. paratuberculosis cells were detected as phage plaques in just 24 h. The bacteriophage used does not infect M. avium subsp. paratuberculosis alone, so to add specificity to this assay, a PCR-based identification method was introduced to amplify M. avium subsp. paratuberculosis-specific sequences from the DNA of the mycobacterial cell detected by the phage. To give further diagnostic information, a multiplex PCR method was developed to allow simultaneous amplification of either M. avium subsp. paratuberculosis or M. tuberculosis complex-specific sequences from plaque samples. Combining the plaque PCR technique with the phage-based detection assay allowed the rapid and specific detection of viable M. avium subsp. paratuberculosis in milk samples in just 48 h

    Management Effects on Greenhouse Gas Dynamics in Fen Ditches

    Get PDF
    Globally, large areas of peatland have been drained through the digging of ditches, generally to increase agricultural production. By lowering the water table it is often assumed that drainage reduces landscape-scale emissions of methane (CH4) into the atmosphere to negligible levels. However, drainage ditches themselves are known to be sources of CH4 and other greenhouse gases (GHGs), but emissions data are scarce, particularly for carbon dioxide (CO2) and nitrous oxide (N2O), and show high spatial and temporal variability. Here, we report dissolved GHGs and diffusive fluxes of CH4 and CO2 from ditches at three UK lowland fens under different management; semi-natural fen, cropland, and cropland restored to low-intensity grassland. Ditches at all three fens emitted GHGs to the atmosphere, but both fluxes and dissolved GHGs showed extensive variation both seasonally and within-site. CH4 fluxes were particularly large, with medians peaking at all three sites in August at 120-230 mg m-2 d-1. Significant between site differences were detected between the cropland and the other two sites for CO2 flux and all three dissolved GHGs, suggested that intensive agriculture has major effects on ditch biogeochemistry. Multiple regression models using environmental and water chemistry data were able to explain 29-59% of observed variation in dissolved GHGs. Annual CH4 fluxes from the ditches were 37.8, 18.3 and 27.2 g CH4 m-2 yr-1 for the semi-natural, grassland and cropland, and annual CO2 fluxes were similar (1100 to 1440 g CO2 m-2 yr-1) among sites. We suggest that fen ditches are important contributors to landscape-scale GHG emissions, particularly for CH4. Ditch emissions should be included in GHG budgets of human modified fens, particularly where drainage has removed the original terrestrial CH4 source, e.g. agricultural peatlands

    Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

    Full text link
    A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.Comment: 464 authors from 60 institutions, 17 pages, 12 figures, 1 table. Submitted to Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Vaccine delivery with microneedle skin patches in nonhuman primates

    Get PDF
    Transcutaneous drug delivery from planar skin patches is effective for small-molecule drugs and skin-permeable vaccine adjuvants. However, to achieve efficient delivery of vaccines and other macromolecular therapeutics into the skin, penetration of the stratum corneum is needed. Topically applied skin patches with micron-scale projections ('microneedles') pierce the upper layers of the skin and enable vaccines that are coated on or encapsulated within the microneedles to be dispersed into the skin. Although millimeter-scale syringes have shown promise for vaccine delivery in humans and technologies, such as the Dermaroller (Dermaroller, Wolfenbüttel, Germany), exist for creating microscale punctures in the skin for delivery of solutions of therapeutics, solid microprojection microneedles coated with dry vaccine formulations offer a number of valuable features for vaccination, including reduced risk of blood-borne pathogen transmission or needle-stick injury, the potential for vaccine administration by minimally trained personnel or even self administration and the use of solid-state vaccine formulations that may reduce or eliminate cold-chain requirements in vaccine distribution. Recent studies in mice have demonstrated the ability of microneedles to effectively deliver vaccines to the skin, eliciting protective immunity to influenza, hepatitis C and West Nile virus.Ragon Institute of MGH, MIT and HarvardMassachusetts Institute of TechnologyHarvard UniversityNational Institutes of Health (U.S.) (AI095109)National Institutes of Health (U.S.) (AI096040)National Institutes of Health (U.S.) (AI095985)National Institutes of Health (U.S.) (AI078526)National Institutes of Health (U.S.) (AI060354)United States. Dept. of Defense (Contract W911NF-07-D-0004

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore