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Abstract 10 

Globally, large areas of peatland have been drained through the digging of ditches, generally 11 

to increase agricultural production.  By lowering the water table it is often assumed that 12 

drainage reduces landscape-scale emissions of methane (CH4) into the atmosphere to 13 

negligible levels.  However, drainage ditches themselves are known to be sources of CH4 and 14 

other greenhouse gases (GHGs), but emissions data are scarce, particularly for carbon 15 

dioxide (CO2) and nitrous oxide (N2O), and show high spatial and temporal variability.  Here, 16 

we report dissolved GHGs and diffusive fluxes of CH4 and CO2 from ditches at three UK 17 

lowland fens under different management; semi-natural fen, cropland, and cropland 18 

restored to low-intensity grassland.  Ditches at all three fens emitted GHGs to the 19 

atmosphere, but both fluxes and dissolved GHGs showed extensive variation both 20 

seasonally and within-site.  CH4 fluxes were particularly large, with medians peaking at all 21 

three sites in August at 120-230 mg m-2 d-1.  Significant between site differences were 22 

detected between the cropland and the other two sites for CO2 flux and all three dissolved 23 

GHGs, suggested that intensive agriculture has major effects on ditch biogeochemistry.  24 

Multiple regression models using environmental and water chemistry data were able to 25 

explain 29-59% of observed variation in dissolved GHGs.  Annual CH4 fluxes from the ditches 26 

were 37.8, 18.3 and 27.2 g CH4 m-2 yr-1 for the semi-natural, grassland and cropland, and 27 

annual CO2 fluxes were similar (1100 to 1440 g CO2 m-2 yr-1) among sites.  We suggest that 28 

fen ditches are important contributors to landscape-scale GHG emissions, particularly for 29 

CH4.  Ditch emissions should be included in GHG budgets of human modified fens, 30 

particularly where drainage has removed the original terrestrial CH4 source, e.g. agricultural 31 

peatlands. 32 



 33 
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 35 

1. Introduction 36 

Northern peatlands store approximately 547 Pg of carbon (Yu et al., 2010) and 37 

contribute to the global atmospheric balance of GHGs through the release and uptake of 38 

carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O).  Intact peatlands are typically 39 

net sinks for CO2, and sources of CH4 and N2O (Freeman et al., 1993, Nykänen et al., 1995, 40 

Smith et al., 2004, Kirschke et al., 2013).  On a 100-year timescale CH4 and N2O have global 41 

warming potentials (GWP) of 28 and 298, respectively, relative to CO2 (IPCC, 2013).  Insights 42 

into biogeochemical cycling in peatlands are therefore important in developing 43 

understanding of global GHG dynamics and future climate change.          44 

Globally, peatlands have been extensively drained for conversion to agriculture, 45 

forestry and peat extraction.  Drained lowland fens, such as those of Eastern England, the 46 

Netherlands and the Southern Baltic coast are extremely fertile, and are therefore 47 

principally converted to intensive agricultural use (Morris et al., 2000).  Conversion to 48 

agricultural use often includes strict hydrological management, such as the use of 49 

subsurface irrigation and, in part due to the long-term subsidence which is an inevitable 50 

consequence of peat drainage, the active pumping of water around fields (e.g. Morrison et 51 

al., 2013).  There is now growing interest in the restoration of agricultural fens to wetlands 52 

(e.g. Höll et al., 2009, Peh et al., 2014), although there are strong commercial factors, as 53 

well as food security considerations, that favour their continued agricultural use (Glenk et 54 

al., 2014).        55 

 Drainage and conversion of fens to agricultural use has the capacity to alter the 56 

cycling of GHGs.  It is generally considered that peatland drainage leads to a decrease in CH4 57 

emissions (to near-zero values), but increases in CO2 and N2O emissions (Glenn et al., 1993, 58 

Martikainen et al., 1995, Alm et al., 1999, Haddaway et al., 2014).  Upon draining, peatlands 59 

therefore become a diminishing carbon reservoir, releasing carbon into the atmosphere that 60 

was fixed over thousands of years.  61 

CH4 fluxes from drained peatlands were previously assumed to be insignificant (IPCC, 62 

2006).  However, a number of studies have shown that the ditches created during drainage 63 

can themselves be significant CH4 sources (Best & Jacobs, 1997, Sundh et al., 2000, 64 



Minkkinen & Laine, 2006, Hendriks et al., 2007, Hyvönen et al., 2013), contributing 60-70% 65 

of total CH4 emissions in one study (Schrier-Uijl et al., 2010), over 84% in another (Teh et al., 66 

2011) and with measured fluxes as high as 366 mg CH4 m-2 hr-1 (Schrier-Uijl et al., 2010).  67 

Where the space between ditches is small, drainage could in theory actually result in a net 68 

increase in landscape-scale CH4 fluxes compared to undrained sites (Roulet & Moore, 1995).   69 

 70 

Figure 1. Schematic of methane transport pathways within ditch systems and surrounding peat.  71 

 72 

Large ditch CH4 fluxes are usually associated with productive, high-nutrient, sites 73 

with low water flow and high labile carbon inputs (e.g. agricultural grasslands; Best & 74 

Jacobs, 1997).  Conversely, faster-flowing ditches in nutrient-poor upland bogs typically 75 

have small fluxes; Cooper et al. (2014) recorded an annual mean CH4 flux of 59.7 kg CH4 ha-2 76 

y-1 from an open ditch in a blanket bog, and Sirin et al. (2012) measured a growing season 77 

flux of 9.9 mg CH4 m2 d-1 from ditches in a forested bog.  A recent review found mean fluxes 78 

for different peat/land-use types varied from approximately 30 g CH4 m-2 yr-1 in forest/semi-79 

natural peatlands, to 200 g CH4 m-2 yr-1 in tropical deforested peatlands (Evans et al., 80 

2016a).  It is important to recognise that methane emissions can occur via different 81 

pathways, and the rates of flux via these pathways will have different controls (fig.1).  82 

Diffusive/steady emissions result from the CH4 concentration differential between the ditch 83 

and the atmosphere. Wetland plant aerenchyma may provide a chimney through which 84 

oxygen is transported into sediment and CH4 escapes to the atmosphere. Finally, steady 85 

emissions may be punctuated by temporally and spatially heterogeneous ebullition, which 86 

can contribute significantly to net CH4 fluxes (Vermaat et al., 2011).  The importance of 87 

ditches in GHG cycling has therefore been recognised by the IPCC and incorporated into 88 

their guidelines (IPCC, 2014).      89 



As well as CH4, drainage ditches emit N2O (Reay et al., 2003, Teh et al., 2011, 90 

Hyvönen et al., 2013). Some ditches have been found to emit CO2 (Best & Jacobs, 1997, 91 

Sundh et al., 2000, Teh et al., 2011, Hyvönen et al., 2013), which others with emergent 92 

vegetation have sometimes been observed to fix CO2 (e.g. Vermaat et al., 2011).  However, 93 

whilst ditches appear to be consistent hotspots for CH4 emissions, CO2 and N2O fluxes are of 94 

a considerably smaller magnitude in terms of their overall contribution to GHG emissions, 95 

and are typically more similar to fluxes from drained peat adjacent to ditches (Evans et al., 96 

2016a).  For example, Hyvönen et al. (2013) found ditches in a boreal cutaway peatland 97 

being used to cultivate Phalaris arundinacea contributed just 1% and 5% of total ecosystem 98 

emission of N2O and CO2. 99 

Internationally, there is a lack of information on GHG emissions from drainage 100 

ditches; in a recent review of published studies, a total of just 19 studies were identified in 101 

which peatland CH4 emissions had been reported, for a total of 69 individual peatland sites 102 

where CH4 was measured (Evans et al., 2016a).  The same analysis suggested that studies of 103 

CO2 and N2O are still too few to allow the data to be collated in a meaningful way.  Just two 104 

studies to date have reported CH4 fluxes from ditches in the UK.  In contrast to this dearth of 105 

information on ditches, numerous studies have looked at GHG emissions associated with 106 

other freshwaters.  For instance, Cole et al. (2007) noted that carbon emissions from lakes 107 

and rivers could be approximately 0.8 Pg C y-1; enough to exert effects on regional budgets, 108 

despite these features occupying small areas.  Similarly, Bastviken et al. (2011) suggested 109 

that CH4 emissions from inland waters have the capacity to offset 25% of the terrestrial 110 

carbon sink, whilst Deemer et al. (2016) calculate that reservoirs emit 1.5% of global 111 

anthropogenic CO2-equivalent emissions from CO2, CH4 and N2O.  Considering N2O, rivers 112 

and estuaries could account for 20% of global anthropogenic emissions (Seitzinger & Kroeze, 113 

1998). 114 

To help address this knowledge gap, we carried out seasonal fieldwork for one year 115 

in ditches at three lowland fens in East Anglia, England.  Each site was under a different 116 

management regime: 1) a semi-natural fen under conservation management; 2) former 117 

cropland that has been restored to extensive grassland, and; 3) intensive deep-drained 118 

cropland.  We measured dissolved GHGs within ditches, diffusive fluxes of CO2 and CH4 from 119 

ditches, and a variety of physical ditch attributes and water chemistry determinands.  Our 120 



aim was to quantify the differences in GHGs between and within sites, and across seasons, 121 

and to attempt to elucidate the drivers behind GHG dynamics.             122 

 123 

2. Materials and methods 124 

2.1. Field sites 125 

All three field sites were located in East Anglia, in Eastern England.  This region was 126 

once the largest area of lowland fen peatland in the UK, covering several thousand square 127 

kilometres.  Since the 17th century, drainage of the land resulted in the loss of most of the 128 

natural fenland, with only a handful of intact fragments remaining.  The principal land use of 129 

the drained areas is intensive arable and horticultural agriculture.  The drainage and 130 

conversion of the fens has resulted in extensive peat wastage, with much of the original 131 

deep peat area now reduced to a dense, thin intermixed organic and mineral layer 132 

(Hutchinson, 1980, Burton and Hodgson, 1987). The altitude of the land is close to (and in 133 

many areas below) sea level.  Mean annual rainfall in the area is 574 mm, and mean annual 134 

temperature is 10.1 °C (data from UK Met Office station in Mepal, within 30 km of all study 135 

sites).  The sites were: 136 

 137 

1. Sedge Fen (semi-natural fen).  52.31 N, 0.28 E.  Area = 61 ha.  Sedge Fen is part of the 138 

Wicken Fen National Nature Reserve.  Peat depth is 3.8 m, bulk density is 0.37 g cm-3, C/N is 139 

15.8 (Evans et al., 2016b).  Vegetation comprises reedbeds dominated by Cladium mariscus 140 

and Phragmites australis, with some Phalaris arundinacea and Calamagrostis canescens 141 

(Eades, 2016), as well as areas of fen carr dominated by Rhamnus cathartica and Frangula 142 

alnus (Rowell, 1986).  The fen cannot be considered to be ‘pristine’ as it contains numerous 143 

internal ditches, and the reedbeds are cut on a three year rotation.  However, the site 144 

contains vegetation and peat that is characteristic of an intact site, and has never been 145 

converted to other land-uses.       146 

 147 

2. Baker’s Fen (extensive grassland). 52.30 N, 0.29 E.  Area = 56 ha.  Baker’s Fen is part of the 148 

wider Wicken Fen area.  Historically, the fen was drained and used for arable agriculture, 149 

resulting in extensive peat wastage and loss of organic soil.  Soil depth is now less than 50 150 

cm, bulk density is 1.06 g cm-3, C/N is 19.7 (Evans et al., 2016b), and organic content is low 151 

(measured as 13-18 % loss on ignition by Stroh et al., 2013).  The site was removed from 152 



arable use and re-seeded with an unknown “grass mixture” in 1995 and 1996, and is 153 

undergoing “open-ended” restoration (Hughes et al., 2011); river water is pumped onto the 154 

site in autumn and winter to inundate it, and highland cattle and wild horses graze it.  Much 155 

of the fen consists of species-poor, flood-plain pasture.  Plant species vary across the site 156 

according to variations in hydrology and nutrient status, but include Carex otrubae, 157 

Arrhenatherum elatius, Agrostis stolonifera, Cirsium arvense, Poa trivialis and several Juncus 158 

species (Eades, 2016).  C. mariscus and P. australis occur in some of the ditches. 159 

 160 

3. Rosedene (cropland). 52.52 N, 0.49 E.  Field area = 8.7 ha.  The cropland site consists of 161 

ditches that surround a field near Methwold Hythe.  The field is part of a much larger area (~ 162 

90 km2) of drained fen that is now under intensive arable cultivation, and is bounded by 163 

rivers and canals.  Peat depth is 1 m, bulk density is 0.32 g cm-3, and C/N is 15 (Evans et al., 164 

2016b).  The hydrology of the site is highly managed; the fields contain subsurface pipes at 1 165 

m depth to aid irrigation and drainage, and water is actively pumped round field perimeter 166 

ditches in order to maintain water levels within the field, removing water during wet 167 

periods and providing irrigation water during dry periods.  During 2015, the study site was 168 

used to cultivate celery (Apium graveolens).  This site is 28 km from the other two sites.  169 

 170 

All three sites formed part of a larger study of GHG emissions from a total of fifteen lowland 171 

peatland sites at located across six regions of England and Wales, which included a broad 172 

suite of eddy covariance and static chamber gas flux, hydrological and water quality 173 

measurements. The results of this large-scale study are reported elsewhere (Evans et al., 174 

2016b).   175 

 176 

2.2. Sampling 177 

The sites were visited on four occasions in 2015 in March, May, August and October.  178 

Because of proximity, the intact and restored site could be visited on the same day, whilst 179 

the agricultural site was visited within three days.  The sampling dates were as follows: 11th 180 

March – semi-natural/grassland, 12th March – cropland; 5th May – semi-natural/grassland, 181 

6th May – cropland; 17th August – cropland, 20th August – semi-natural/grassland; 12th 182 

October – cropland, 15th October – semi-natural/grassland.  At each site, ditch sampling 183 

locations were selected with the aim of covering a large area, and were selected on a non-184 



random basis according to where measurements from the ditch could easily be taken.  For 185 

the semi-natural site, we sampled along a 910 m length of ditch network (i.e. all sampling 186 

points were hydrologically connected) and then onto a ditch that bounded the edge of the 187 

fen (fig. 2).  Similarly, all ditch locations at the grassland site were hydrologically connected, 188 

with a ditch distance of 1200 m between farthest sampling points.  At the cropland site the 189 

ditch ran continuously round a field, with junctions connecting to other ditches at field 190 

corners.  The sampling locations here ran for 1200 m.  The number of sampling locations for 191 

each site was: semi-natural = 13, grassland = 11, cropland = 10.  The same sampling 192 

locations were used for each of the four seasonal visits.  193 

A range of measurements were taken at each sampling location.  Environmental and 194 

physical measurements were: air temperature, water temperature, atmospheric pressure, 195 

and water depth.  A 50 ml water sample for water chemistry analysis was collected in a 196 

polypropylene vial.  A sample for dissolved GHG analysis was collected using the headspace 197 

method (Hope et al., 2004); 30 ml of ditch water was collected in a 60 ml plastic syringe and 198 

equilibrated with 30 ml of ambient air by shaking for approximately 60 seconds, and 12 ml 199 

of headspace was then collected in a 12 ml borosilicate glass vial.  Fluxes of CH4 and CO2 200 

were measured in real time in the field using a floating chamber (0.6 x 0.6 x 0.3 m) that was 201 

shrouded to exclude light.  Buoyancy for the chamber was provided by two 2 l plastic bottles 202 

filled with air, and the chamber was placed carefully on the water to minimise disturbance.  203 

Emergent vegetation was excluded (e.g. P. australis), but some sampling points contained 204 

floating algae that will have contributed to fluxes.  The chamber was connected to a Los 205 

Gatos Ultraportable Greenhouse Gas Analyzer.  The chamber was deployed until a linear 206 

flux was observed, and this was typically 1-5 minutes.  Whilst there has been some criticism 207 

of the use of floating chambers, flow rates in the ditches we studied where either extremely 208 

low or absent (i.e. chambers did not drift away) and therefore our measurements are likely 209 

to be robust (see Lorke et al., 2015).           210 



  211 

 212 



 213 

 214 

Figure 2. Maps of the semi-natural site (top panel), extensive grassland site (middle panel) and cropland site 215 

(bottom panel).  Red dots mark numbered sampling locations, blue lines mark ditches/watercourses. For the 216 

semi-natural and extensive grassland sites, blue arrows mark where water is pumped onto site from Wicken 217 

Lode.   218 

 219 

2.3 Analysis 220 

 Electrical conductivity (EC) and pH were measured on the 50 ml water sample.  The 221 

sample was then passed through a nylon filter at 0.45 µm for further analysis.  Dissolved 222 

organic carbon (DOC) and inorganic carbon (DIC) were analysed using a Shimadzu TOC 223 

Analyzer.  DOC was measured as non-purgeable organic carbon (NPOC).  Absorbance was 224 

measured at 280 nm using a Thermo Spectronic Helios Gamma Spectrophotometer.  This 225 

was normalised against DOC concentration to give the specific ultraviolet absorbance 226 

(SUVA).  SUVA is commonly measured at 254 nm, although high nitrate (NO3
-) 227 

concentrations can interfere at wavelengths < 250 nm (Wang & Hsieh, 2001).  Considering 228 



the potential for high NO3
- concentrations in surface waters in areas of intensive agriculture 229 

a SUVA wavelength of 280 nm was selected.  NO3
- was measured using a NICO 2000 ion-230 

selective electrode and appropriate standards.  Dissolved CH4 and CO2 were analysed using 231 

a Los Gatos Ultraportable Greenhouse Gas Analyzer equipped with a sampling loop (Baird et 232 

al., 2010).  Dissolved N2O was analysed on an Ai Cambridge GC94 equipped with an Electron 233 

Capture Detector (ECD).   234 

Floating chamber fluxes of CH4 and CO2 fluxes were calculated according to 235 

Denmead (2008), using the modified formula:  236 

𝐹𝑔 = 

1

𝐴

𝑑𝑔𝑚

𝑑𝑡
 237 

where Fg is the flux of CH4 or CO2 (M L-2 T-1 – mg m-2 day-1), A is the area inside the 238 

chamber (L2 – m2), gm is the mass of gas in the chamber (M – mg), and t is time (T – days).  239 

Fluxes were calculated using a linear regression between time and chamber gas mass, and 240 

accepted if this regression was significant (p ≤ 0.05).  Fluxes that were not significant were 241 

assumed to be zero.  Although it is usual to specify a cut-off value for the R2 of the flux 242 

regression (below which value fluxes are rejected) we did not take this approach, because 243 

the high-frequency measurements provided by the analyser allowed detection of small but 244 

clearly non-zero (significant) fluxes despite high short-term scatter (low R2).  However, of 245 

the 253 fluxes that were significant, only 12 had an R2 under 0.7.   Fluxes were corrected for 246 

atmospheric pressure and temperature measured during each individual chamber 247 

deployment.  Because of the short deployment time we assumed that pressure and 248 

temperature remained steady during flux measurement.  Piston velocity was calculated 249 

using the standard formula (e.g. Gålfalk et al., 2013): 250 

𝐹 = 𝑘 𝑥 (𝐶𝑎𝑞 − 𝐶𝑒𝑞)      251 

where F is the CH4 flux, k is the piston velocity, Caq is the dissolved concentration of 252 

CH4, and Ceq is the theoretical dissolved concentration if the water is in equilibrium with the 253 

air (calculated via Henry’s Law). The formula was rearranged to give k. 254 

 255 

2.4 Statistics 256 

 Statistical analysis was carried out in SPSS to determine if differences in GHGs and 257 

piston velocity (CH4 and CO2 flux, and dissolved concentrations of CH4, CO2 and N2O) were 258 

present between sites.  All six variables failed Levene’s test for homogeneity of variance. 259 



Kolmogorov-Smirnov tests were used to check for normal distributions.  All six variables 260 

were not normally distributed, so transformations were sought to resolve this.  CO2 flux was 261 

transformed by square root transformation, and dissolved CO2 was normalised by cube root 262 

transformation.  Remaining variables could not be transformed to fit normal distributions.  263 

As such, a linear mixed model was used to test for differences between sites, using time as a 264 

repeated measure, and with Bonferroni correction for pairwise comparisons.  Stepwise 265 

regression analysis was used as an exploratory test to look for relationships between 266 

dissolved CH4 and CO2 and the following variables: ditch water temperature, ditch depth, 267 

EC, absorbance at 280 nm, NO3
-, DOC, SUVA, DIC, peat depth of the terrestrial fen, C:N, and 268 

water table in the terrestrial fen at the time of sampling (data for this was taken from Evans 269 

et al., 2016b).  For the dissolved CO2 model, pH was not used as an explanatory variable due 270 

to the fact that dissolved CO2 and pH are interlinked (e.g. Abril et al., 2015).  Differences 271 

were considered significant when p ≤ 0.05.   272 

 273 

3. Results 274 

3.1. Water chemistry, ditch depths and environmental data 275 

 Table 1 displays a range of environmental and biogeochemical/physical data for the 276 

three sites through the year.  Ditch water depths at the semi-natural site were consistently 277 

deep through the year (60 cm and above).   Depths at the grassland site were generally 278 

shallow (~ 20cm), as were those at the cropland site, except during August when the mean 279 

was 60 cm.  For all sites water and air temperature was highest during August.  Mean ditch 280 

pH at all three sites was between 7.2 and 8.0, but EC was more variable both seasonally and 281 

between sites (intact < agricultural < restored).  NO3
- concentrations peaked in May at the 282 

cropland site (18 mg l-1), presumably due to the use of fertilisers.  At the grassland site NO3
- 283 

was low (≤ 5 mg l-1) except in March when the mean was 19 mg l-1.  The fen is rewetted 284 

during autumn and winter using high- NO3
- river water, and the high concentration in March 285 

is a legacy of this rewetting.  DOC concentrations were moderately high at the semi-natural 286 

and grassland sites (mean ~ 30 mg l-1), but were lower by a third at the cropland.   287 

 288 

3.2. Differences in ditch fluxes between and within sites 289 

There was no significant difference in CH4 flux between sites, but a significant (p < 290 

0.001) difference was found for CO2 flux between the cropland and other two sites (fig.3).  291 



Median CH4 fluxes were relatively low in March (≤ 10.5 mg m-2 d-1).  Fluxes stayed low in 292 

May at the grassland and cropland fens, but were higher (80 mg m-2 d-1) at the semi-natural 293 

fen.  Median CH4 fluxes peaked in August at all three sites, at 120-230 mg m-2 d-1.  Highest 294 

individual fluxes at each site were: 3650, 25400 and 7430 mg m-2 d-1 for the semi-natural 295 

(May), grassland (August) and cropland (August) site respectively.  CO2 flux was relatively 296 

stable at the semi-natural site at 2050-3250 mg m-2 d-1, but fluctuated at the other two sites, 297 

peaking at 6600 mg m-2 d-1 in August at the grassland site, and at 4760 mg m-2 d-1 in October 298 

at the cropland site.  Highest individual fluxes at each site were:  9580, 16800 and 13800 mg 299 

m-2 d-1 for the semi-natural, grassland and cropland sites respectively, and were all recorded 300 

in August.  Differences were also apparent within sites, and median fluxes for each 301 

individual sampling location are shown in fig.4. 302 

There was considerable variation apparent in piston velocities between sites and 303 

months, but none of these differences was significant (table 2).    304 

 305 

3.3. Annual ditch fluxes 306 

 To calculate annual mean fluxes for 2014, a simple time-weighted median approach 307 

was used, using the medians from fig.3.  For CH4, these produced estimates of 37.8, 18.3 308 

and 27.2 g CH4 m- 2yr-1 for the semi-natural, grassland and cropland sites respectively, with 309 

respective standard errors of 74.6, 244, and 97.3 g CH4 m- 2yr-1.  For CO2 the annual fluxes 310 

were 1100, 1170 and 1440 g CO2 m-2 yr-1 for the semi-natural, grassland and cropland sites 311 

respectively, with respective SEs of 225, 340 and 312 g CO2 m-2 yr-1.   312 



 313 

   314 

Figure 3.  Median ditch fluxes of CH4 and CO2 measured using floating chambers at the three sites.  Error bars 315 

represent first and third quartiles.  .  Note that the error bar for CH4 in August at the cropland site exceeds the 316 

scale.  There was a significant difference (p ≤ 0.001) for CO2 fluxes between the cropland and other two sites. 317 



 318 

Figure 4.  Median CH4 (left) and CO2 (right) fluxes for each individual numbered sampling point, grouped by 319 

site.  Fig.2 displays numbered sampling points on site maps. 320 

 321 

3.4. Differences in dissolved gases between sites 322 

Significant differences were observed for dissolved CO2 between the cropland and 323 

other two sites (p < 0.001).  For dissolved CH4, significant differences were found between 324 

the cropland and semi-natural fen (p < 0.01) and the cropland and grassland (p < 0.05).  For 325 

N2O, a significant difference was found between the cropland and other two sites (p < 326 

0.001) (fig.5).  Median CH4 concentrations were below 0.1 mg l-1, except for a spike of 0.43 327 

mg l-1 at the cropland site in August.  Median dissolved CO2 at the semi-natural site showed 328 

no obvious seasonal variation (range 4.8-9.0 mg l-1), whilst there was an increase through 329 

the year at the grassland site (1.7-7.5 mg l-1).  Dissolved CO2 at the cropland site also peaked 330 

later in the year (15 mg l-1 in August and October).  Median N2O concentrations were under 331 



1.5 µg l-1 at the semi-natural and grassland sites.  At the cropland site N2O concentrations 332 

were generally higher.  Differences were apparent within sites, and median concentrations 333 

for each individual sampling location are shown in fig.6. 334 

   335 

 336 

 337 

Figure 5.  Median ditch dissolved concentrations of CH4, CO2 and N2O at the three sites.  Error bars represent 338 

first and third quartiles..  Note that the error bar for CH4 in August at the cropland site exceeds the scale.  339 

There were significant differences between the cropland and other two sites for CO2 (p < 0.001) CH4 (cropland 340 

vs semi-natural p < 0.01, cropland vs grassland p < 0.05) and N2O (p < 0.001).   341 



 342 

Figure 6.  Median CH4 (left) CO2 (middle) and N2O (right) concentrations for each individual numbered 343 

sampling point, grouped by site.  Fig.2 displays numbered sampling points on site maps. 344 

 345 

3.5. Drivers of dissolved GHGs 346 

 Significant regression models were produced for both dissolved CH4 and CO2, with 347 

respective R2 values of 0.29 and 0.50.  Table 3 displays the p values and slope coefficients 348 

used in each model. 349 

 There was a significant positive linear relationship between dissolved N2O 350 

concentrations and NO3
- (p < 0.001, R2 = 0.33) but an improved fit was found between 351 

dissolved N2O and the DOC:NO3
- ratio, with N2O concentrations increasing as the ratio 352 

decreased (fig.7).   Apart from three clear outliers (which were not removed from the 353 

analysis), dissolved N2O concentration did not rise above 1.5 µg l-1 until DOC:NO3
- fell below 354 

5.  This relationship was consistent across all three sites.    355 



 356 

Figure 7.  Relationship between dissolved N2O and DOC:NO3
- ratio for all individual samples. Red diamonds = 357 

semi-natural fen, black circles = grassland, blue triangles = cropland.  Trend line is 3rd order polynomial.   358 

 359 

4. Discussion 360 

4.1. Site characteristics 361 

 There were physical and biogeochemical differences in the ditches of the three fen 362 

sites.  The ditches at the semi-natural site were deepest whilst those at the grassland site 363 

were shallowest, reflecting the difficulties in keeping this grassland site wet, as noted by Peh 364 

et al. (2014).  Ditch water levels at the cropland site were also shallow, but were raised for 365 

irrigation during the peak of the growing season; this demonstrates the high degree of 366 

water management to maximise arable production (Morrison et al., 2013).   367 

 368 

4.2. CO2 and CH4 fluxes 369 

 We no significant differences between sites for CH4 fluxes, but fluxes were CO2 fluxes 370 

were significantly higher at the cropland compared to the grassland and semi-natural sites..  371 

There were seasonal patterns in fluxes of CH4; emissions peaked at all three fens in August 372 

at which time they were not significantly different.  It is likely that these high fluxes are due 373 

to the effect of summer temperatures on methanogenesis (Dunfield et al., 1993).  There was 374 
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extensive within-site variation in gas fluxes, particularly for CH4.  For instance, at the semi-375 

natural fen, sample point 1 had CH4 fluxes an order of magnitude higher than the adjacent 376 

sample point 2.  Sample point 1 was close to the wind pump that pumps river water onto 377 

the fen, and it could be that the mixing between low DOC/high NO3
-  river water and high 378 

DOC/low NO3
- fen water produces a ‘hotspot’ of organic carbon processing resulting in CH4 379 

production (sensu Palmer et al., 2016).  The lowest CH4 fluxes were recorded at a ditch that 380 

bounded the edge of the fen, which displayed lower DOC concentrations and higher NO3
- 381 

concentrations, suggesting that this ditch was connected to the river, and contained less 382 

organic substrates for methanogenesis.  At the grassland site, CH4 fluxes were highest at 383 

adjacent sample points 7 and 8 though this was not obviously related to any measured 384 

variables, e.g. EC, DIC and DOC were not elevated at these locations.  At the cropland site, 385 

sample point 10 was extremely high compared to the other points.  This ditch was shaded 386 

by a dense cover of trees and was near to a dead-end in the ditch system.  This point had 387 

elevated levels of EC (25% higher compared to the mean of the other sample points) and 388 

DOC (114% higher), and it is likely that standing water here leads to an accumulation of 389 

organic matter and stagnation, and hence higher rates of methanogenesis (fig.1).  This 390 

hypothesis is supported by the fact that dissolved CH4 concentrations at this location were 391 

higher than any other sampling point at any site (fig. 6). 392 

 Although we only sampled four times within a year, our design featured large 393 

numbers of sampling points per site, and different sites were sampled at the same times of 394 

year.  Calculated mean fluxes may not therefore be an accurate representation of the 395 

annual values, but should provide a reasonable representation of between-site differences.  396 

Mean CH4 fluxes followed the order semi-natural>cropland>grassland.  The mean flux for 397 

the semi-natural fen, 38 g CH4 m-2 yr-1, falls within the range of other reported fluxes from 398 

ditches in semi-natural peatlands; e.g. 12 g CH4 m-2 yr-1 and 164 g CH4 m-2 yr-1 from drained 399 

boreal fens (Glagolev et al., 2008, Minkkinen & Laine, 2006).  The only reported annual ditch 400 

CH4 flux from a temperate semi-natural site are 5.5 g CH4 m-2 yr-1 from a UK upland blanket 401 

bog (Cooper et al., 2014).  The considerably higher flux reported from our semi-natural site 402 

therefore shows the effect of nutrient status on ditch emissions.  It has been suggested that 403 

ditch CH4 emissions increase as land-use intensity increases (Evans et al., 2016a) but our 404 

data do not show this.  The flux from our grassland site, 18 g CH4 m-2 yr-1 is low compared to 405 

values such as 43, 66, 77 and 70 g CH4 m-2 yr-1 from other low-intensity grasslands (Schrier-406 



Uijl et al., 2010, Vermaat et al., 2011, McNamara, 2013, Hendricks et al., 2007), although 407 

van den Pol-van Dasselaar et al. (1999) recorded an annual flux of just 11 g CH4 m-2 yr-1.  To 408 

our knowledge, our annual ditch flux calculation of 27 g CH4 m-2 yr-1 for the cropland is, along 409 

with the fluxes in our broader project report (Evans et al., 2016a), the first annual flux 410 

estimate for a temperate peatland under agriculture.  There are several possible reasons for 411 

the highest annual flux being observed at the semi-natural site.  Firstly, subsidence at our 412 

grassland site has resulted in the loss of the majority of peat soil, and it may be that the low 413 

organic content of the soil has led to a reduction in CH4 production.  This could be especially 414 

relevant if CH4 is produced in the saturated peat, then transported laterally and degassed 415 

from ditches (e.g. fig.1); the grassland site dries out completely, presumably resulting in zero 416 

methanogenesis, whilst the water table remains in the peat at a deep level at the cropland, 417 

making this a plausible hypothesis.  Secondly, the semi-natural site is likely to have a well-418 

established methanogenic community compared to the other two sites where severe 419 

drainage and loss of peat (Stroh et al., 2013) may have disrupted the microbial communities 420 

(Jerman et al., 2009).  Thirdly, the ditches at the semi-natural site were relatively deep, and 421 

depth fluctuations were minimal compared to the other two sites.  This could lead to the 422 

formation of anoxic conditions, thus stimulating CH4 emissions and reducing oxidation in the 423 

water column (O2 measurements on future sampling campaigns would help to resolve this).  424 

Finally, Vermaat et al. (2011) recorded more ebullition in ditches sheltered by reed beds.  It 425 

is therefore possible that steady ebullition contributed to the high fluxes at the semi-natural 426 

fen, as well as being responsible for the individual high fluxes (e.g. 25400 and 7430 mg m-2 d-427 

1) that were observed at the grassland and cropland.  Ebullition from ditches in a Finnish 428 

mire measured using bubble traps was 3-37 mg m-2 d-1, and was negligible (0.2-2.3% 429 

compared to diffusive emissions) in flowing ditches but substantial in ditches with standing 430 

water (10-22% of diffusive flux) (Minkkinen et al., 1997, 2006).  Vermaat et al. (2011) 431 

calculated ditch ebullition by interpreting steep, short-term increases in CH4 concentration 432 

in a floating chamber as evidence of bubbling, and stated that approximately 50% of total 433 

flux was due to ebullition.  Other research using bubble traps has shown that ebullition in 434 

wetland and agricultural streams can equal the diffusive flux  (Wilcock & Sorrell, 2008, 435 

Crawford et al., 2014).  More measurements of ebullition in ditches are clearly needed.  436 

Unlike CH4, annual CO2 fluxes did increase with land-use intensity, in the order semi-437 

natural<grassland<cropland.  Estimates of annual ditch CO2 fluxes are lacking from the 438 



literature, but scaling up the measurements of Vermaat et al. (2011) would produce annual 439 

fluxes of 1050 g CO2 m-2 yr-1 for ditches in reed beds, and 1310 g CO2 m-2 yr-1 for ditches in 440 

rough pasture.  Our semi-natural site is therefore similar, with a flux of 1100 g CO2 m-2 yr-1, 441 

although our grassland annual flux was 1170 g CO2 m-2 yr-1.  Our median CO2 fluxes ranged 442 

from 488 mg m-2 d-1 to 8000 mg m- 2 d-1, and are therefore similar to those reported by 443 

Schrier-Uijl et al. (2011), Teh et al. (2011) and Hyvönen et al. (2013).  CO2 fluxes at the semi-444 

natural site displayed less seasonality which may be a function of the deeper ditches 445 

minimising temperature increases in the basal peat, and therefore suppressing productivity 446 

(McEnroe et al., 2009).   447 

          448 

4.3. Dissolved GHGs 449 

 For dissolved CH4, CO2 and N2O, we found significant differences between the 450 

cropland compared to the grassland and semi-natural sites.  This suggests that intensive 451 

agriculture has affected the biogeochemistry of the cropland ditches.  Some sampling 452 

locations showed similar concentrations of dissolved gases, and this could be due spatial 453 

autocorrelation in dissolved GHGs (e.g. Chapra & Di Toro, 1991).  This was most obvious for 454 

CH4 at the semi-natural site, and N2O at the semi-natural site and grassland. 455 

 Once pH had been removed as a predictive variable, we were able to account for 456 

29% of temporal and spatial (within and between site) variability in CH4, and 50% of 457 

variability in CO2.  For dissolved CO2 there were positive relationships with depth to water 458 

table, DIC concentration, SUVA, and ditch depth.  A deeper water table within the peat 459 

should result in increased decomposition, with CO2 then exported laterally into ditches.  A 460 

negative relationship between CO2 and water depth has been found for pools in natural 461 

peatlands (McEnroe et al., 2009), and so our contrary finding could be due to the high 462 

degree of management at these fens; e.g. irrigation at the cropland reversed the natural 463 

seasonality in ditch depth and doubled the water level of the ditches in August, which 464 

coincided with the growing season increase in dissolved CO2.  465 

 Dissolved CH4 concentrations fell within the same range as those in agricultural 466 

streams (0.001-0.4 mg L-1, Wilcock & Sorrell, 2008), and ditches in agricultural peatlands 467 

(maximum of 0.04 mg L-1, Schrier-Uijl et al., 2011).  They were of the same magnitude as 468 

0.022 mg L-1 which was the calculated mean fluvial CH4 concentration from 111 published 469 

studies (Stanley et al., 2016).  Dissolved CH4 correlated positively with air temperature, NO3
-, 470 



DIC, and depth to water table (in the fen/field), and negatively with EC.  Higher 471 

temperatures could stimulate methanogenesis, leading to increased concentrations of CH4.  472 

The positive correlation between dissolved CH4 and depth to water table may, in part, be 473 

due to the confounding effect of seasonality; i.e. water tables were lower in the growing 474 

season when ditches become depleted in oxygen, leading to higher rate of methanogenesis.  475 

The positive correlation between NO3
- and CH4 is unexpected, as NO3

- inhibits 476 

methanogenesis (Watson & Nedwell, 1998) and, as an electron acceptor, allows denitrifying 477 

bacteria to favourably out-compete methanogens (Le Mer & Roger, 2001).  One possible 478 

explanation is that increased NO3
- levels are associated with increased ammonium 479 

concentrations at the semi-natural fen (Conrad & Rothfuss, 1991), and the inhibitory effect 480 

of ammonium on methanotrophy is larger than the inhibitory effect of NO3
- on 481 

methanogenesis.  It may be that high nutrient levels associated with NO3
- could coincide 482 

with inputs of labile organic matter, particularly at agricultural sites, thus stimulating 483 

methanogenesis when other electron acceptors have been depleted in the sediment.  484 

Alternatively, as discussed in section 4.2, it could be that CH4 is produced in the saturated 485 

peat and then transported laterally into the ditch; i.e. methanogenesis occurs in zones 486 

distant from potential NO3
- inhibition.  Schade et al. (2016) did find a weak negative 487 

correlation between NO3
- and CH4 in a low NO3

-/high DOC stream but found no correlation 488 

in a high NO3
-/low DOC stream or in a high NO3

-/high DOC stream.  Similarly, Crawford et al. 489 

(2016) found no evidence that NO3
- inhibited CH4 production or emission in streams, and, in 490 

line with our hypothesis above, suggested that methanogenesis could be spatially removed 491 

from high NO3
-  concentrations.  The absence of ditch depth from the CH4 model is 492 

interesting as negative relationships between CH4 flux and depth have been noted 493 

previously, although these are sometimes low; e.g. McEnroe et al. (2009) reported an R2 494 

value of 0.23 for pools, and Vermaat et al. (2011) found an R2 of 0.15 for ditches.  Pelletier 495 

et al. (2007) found both negative and positive relationships between CH4 flux and depth in 496 

pools at different peatlands, and postulated that ebullition could be a confounding variable.  497 

The active water management at some sites could also be a confounding factor; as 498 

previously mentioned this management removes the natural seasonality in ditch depth.  499 

Finally, it is worth considering that wind speed may play a role in GHG dynamics. However, 500 

the ditches at our sites are predominantly sheltered by reedbeds or banks and, as previously 501 



noted, the floating chamber did not drift, suggesting that wind speed was low on sampling 502 

days.  503 

Dissolved N2O was present in the ditches at all three fens, but was low at the semi-504 

natural site.  Concentrations were only high at the grassland site in March, but were high for 505 

most of the year at the cropland site, presumably due to the application of fertilisers to 506 

adjacent fields.  Positive relationships between dissolved N2O and N2O flux have been 507 

demonstrated in rivers (Yang et al., 2011).  Diffusive fluxes of N2O have been shown to occur 508 

in oxygenated waters and it therefore seems highly probable that ditches at all three fens 509 

were sources of N2O to the atmosphere.  Wilcock & Sorrell (2008) measured N2O 510 

concentrations in agricultural streams between 0.26-28.5 µg l-1, considerably higher than 511 

our maximum individual measurements of 6.15 µg l-1, whilst concentrations in a eutrophic 512 

river have been reported as 0.66-1.14 µg l-1 (Silvennoinen et al., 2008).  Sturm et al. (2014) 513 

recorded average concentrations of N2O in lake surface water as 0.61 µg l-1 and 0.74 µg l-1, 514 

similar to median concentrations at our grassland and semi-natural site, although 515 

concentrations at our cropland were higher.  The authors also measured N2O fluxes, with 516 

averages of 3.7 and 5.3 µg m-2 hr-1.  Reay et al. (2003) reported a relationship between N2O 517 

fluxes and dissolved N2O in UK agricultural ditches; applying that relationship to our data 518 

allows estimates of median flux for each fen to be calculated as 300, 210, and 1150 µg m-2 519 

hr-1 for the semi-natural, grassland and cropland sites respectively.  These fluxes at the 520 

semi-natural and grassland sites are similar to those reported by Teh et al. (2011) for ditches 521 

in a peatland pasture in the USA.        522 

We found a statistically significant relationship between dissolved N2O and NO3
-, in 523 

agreement with others (e.g. Reay et al., 2003, Hinshaw & Dahlgren, 2013, Schade et al., 524 

2016).  However, a better fit was found between dissolved N2O and the DOC:NO3
- ratio.  525 

Aquatic systems generally show an inverse relationship between DOC and NO3
- 526 

concentrations, which reflects a gradient from nitrogen limitation of microbial processes in 527 

carbon-rich systems to labile organic matter limitation in carbon-poor systems (Goodale et 528 

al., 2005; Taylor and Townsend, 2010). Our observation that dissolved N2O only increases 529 

above ambient atmospheric concentrations when DOC/NO3
- ratios are low suggests both 530 

that NO3
- concentrations need to be high enough to allow denitrification to occur, and that 531 

labile organic matter concentrations need to be low enough to favour this process over 532 

other microbial processes such as NO3
- reduction or assimilation. There were three samples 533 



that appeared to deviate from the observed relationship, and it may be that higher 534 

concentrations of ammonium cause elevated N2O concentrations, particularly if dissolved 535 

oxygen is not limiting (Liikanen & Martikainen, 2003).  536 

 537 

4.4. Implications for GHG accounting and conclusions 538 

 Our data support previous studies in showing that ditches in both semi-natural and 539 

agricultural peatlands act as sources of CH4, CO2 and N2O emissions.  It is widely recognised 540 

that intact fens are important emitters of CH4 (Turetsky et al., 2014).  Although not intact, 541 

our semi-natural fen is under conservation management, and therefore the vegetation is 542 

similar to intact fens.  As such, the annual terrestrial flux from our semi-natural site is 11.7 g 543 

CH4 m-2 yr-1 (Evans et al., 2016b) , compared to 37.8 g CH4 m-2 yr-1 from the ditches.  When 544 

weighted by area for the entire fen, ditches would therefore be responsible for 0.53 g CH4 545 

m-2 yr-1, approximately 5% of total emissions.  Although ditches occupy only a fraction of the 546 

landscape, the magnitude of the fluxes observed here suggest that ditches in modified fen 547 

landscapes must be considered when calculating carbon balances, particularly for studies 548 

relying on static chamber, rather than eddy-covariance, methods, since this component of 549 

CO2 and CH4 emissions will otherwise be missed.  In drained peatland systems, the 550 

contribution of ditches to the overall CH4 budget is even more marked, because CH4 fluxes 551 

from drained peat surfaces tend to be near zero (Willison, 1998, IPCC, 2014). At our 552 

cropland site, the field surface acted consistently as a small net sink for CH4 (Evans et al., 553 

2016b) and ditches were thus responsible for the entirety of CH4 emissions from the system 554 

as a whole, which would give an areally-weighted flux of 0.44 g CH4 m-2 yr-1 compared to the 555 

field sink of -0.17 g CH4 m-2 yr-1.  This is probably true for agriculturally drained peatlands in 556 

general (IPCC, 2014, Evans et al., 2016a).  Terrestrial fluxes at our grassland restoration site 557 

show that both uptake and emission of CH4 occur, but the annual flux is approximately zero 558 

(Evans et al., 2016a).  Thus, the ditches here are responsible for the majority of CH4 559 

emissions to the atmosphere, calculated on an areal basis as 0.31 g CH4 m-2 yr-1. 560 

Our CO2 fluxes were similar to others reported in the literature from ditches, which 561 

have often been of the same magnitude as fluxes from terrestrial fen (e.g. Schrier-Uijl et al., 562 

2011, Hyvönen et al., 2013).   Our median estimated N2O fluxes for the semi-natural and 563 

grassland sites are slightly higher than terrestrial fluxes from a Finnish drained 564 

minerotrophic fen (Martikainen et al., 1995) whilst our calculated N2O fluxes were in the 565 



same range as mean terrestrial fluxes from a German agricultural fen (Flessa et al., 1998).  566 

These observations support previous suggestions that ditches do not act as hotspots for CO2 567 

and N2O in the same way that they do for CH4 (Evans et al., 2016a, Teh et al., 2011). 568 

 Future work should continue to examine the role that ditches play in releasing GHGs 569 

to the atmosphere, but a particular focus should be on CH4.  It is likely that high-frequency 570 

measurements combined with sampling replication on both small (i.e. field) and large (i.e. 571 

regional) scales would elucidate in greater detail the drivers between both dissolved GHGs 572 

concentrations and their efflux to the atmosphere.  It is apparent that neglecting to consider 573 

ditches in drained peatlands will lead to significant errors when calculating landscape-scale 574 

GHG budgets.             575 

 576 
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Table 1.  Mean environmental, physical and water chemistry measurements for ditches at the three sites on the four sampling occasions.  Numbers in brackets are standard error of the 886 

mean.  Depth is ditch water depth.    887 

 888 
    March May Aug Oct   March May Aug Oct 

Air temp (°C) Semi-natural 8 12.5 12.7 12.2 Water temp (°C) 7.3  (0.2) 15.5  (0.2) 18.6  (0.2) 10.2  (0.1) 

  Grassland 8 12.5 12.7 12.2 

 

10.7  (0.3) 15.2  (0.3) 17.6  (0.4) 10.1  (0.2) 

  Cropland 6.9 13.7 15.9 9.1 

 

9.9  (0.6) 12.6  (0.2) 15.5  (0.4) 9.8  (0.2) 

  

         

  

Depth (cm) Semi-natural 85.6  (4.8) 86.9  (3.5) 64.0  (6.7) 70.1  (5.5) pH 7.7  (0.02) 7.9  (0.05) 7.6  (0.04) 7.6  (0.02) 

  Grassland 23.3  (7.3) 36.4  (3.9) 16.2  (1.4) 21.1  (2.8) 

 

8.0  (0.06) 7.8  (0.09) 7.3  (0.06) 7.6  (0.03) 

  Cropland 18.4  (3.1) 32.7  (4.6) 60.6  (3.5) 20.5  (3.9) 

 

7.5  (0.04) 7.8  (0.05) 7.2  (0.07) 7.2  (0.04) 

  

         

  

EC (µS cm-1) Semi-natural 921  (62) 907  (18) 810  (73) 965  (51) NO3
- (mg l-1) 11.6  (4.2) 6.7  (1.8) 5.2  (0.8) 6.5  (1.2) 

  Grassland 994  (32) 1117  (102) 1306  (80) 1584  (99) 

 

19.1  (5.8) 4.1  (0.1) 3.9  (0.1) 5.0  (0.2) 

  Cropland 1263  (87) 968  (69) 888  (28) 1134  (65) 

 

9.9  (1.4) 18.2  (4.6) 4.8  (0.7) 5.3  (0.4) 

  

         

  

DOC (mg l-1) Semi-natural 28.7  (0.9) 28.9  (2.1) 27.4  (0.8) 37.4  (2.2) SUVA 2.8  (0.1) 2.8  (0.1) 3.3  (0.1) 2.8  (0.1) 

  Grassland 19.7  (2.7) 28.8  (1.1) 30.3  (1.6) 37.6  (2.4) 

 

2.3  (0.1) 2.2  (0.0) 2.4  (0.1) 2.2  (0.2) 

  Cropland 27.4  (3.3) 15.2  (4.8) 18.0  (2.8) 25.5  (3.7) 

 

2.1  (0.1) 2.1  (0.1) 2.8  (0.1) 2.3  (0.1) 

  

         

  

DIC (mg l-1) Semi-natural 92  (2) 80  (3) 70  (2) 97  (2) 

    

  

  Grassland 72  (2) 59  (6) 79  (4) 102  (3) 

    

  

  Cropland 69  (2) 52  (6) 68  (4) 77  (5)           

 889 
 890 



 891 
 892 
 893 
Table 2. Median piston velocities (m s-1) for each site and each month, with first and third quartiles 894 

    March May Aug Oct 

Semi-natural Median 5.87E-06 1.16E-04 2.65E-04 8.58E-06 

  1st 2.97E-06 1.33E-05 8.72E-05 3.96E-06 

  3rd 1.33E-05 2.42E-04 4.17E-04 1.23E-04 

Grassland Median 4.89E-06 3.80E-05 9.18E-06 8.89E-06 

  1st 2.23E-06 3.75E-06 7.99E-06 2.21E-06 

  3rd 9.76E-06 7.87E-04 6.75E-05 2.33E-05 

Cropland Median 2.25E-06 2.26E-06 4.31E-06 8.01E-06 

  1st 1.62E-06 1.67E-06 2.88E-06 4.39E-06 

  3rd 3.40E-06 3.18E-06 7.20E-05 3.61E-05 
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 915 
 916 
 917 
Table 3.  Results of the multiple linear regressions to determine the relationships between dissolved CO2/CH4 and other measured variables for the intact, restoration, and agricultural site.  918 

Note that depth to WT refers to the water table depth in the terrestrial part of the fen. 919 

Diss CO2 Slope coefficient p 

Intercept -15.1 <0.001 

Depth to WT 0.101 <0.001 

DIC 0.133 <0.001 

SUVA 2.594 0.001 

Ditch depth 0.032 0.02 

  

 

  

Diss CH4 Slope coefficient p 

Intercept -0.63 <0.001 

Air temp 0.0148 <0.001 

NO3
- 0.0066 <0.001 

DIC 0.0066 <0.001 

Depth to WT 0.0019 <0.001 

EC -0.0002 0.02 

 920 


