70 research outputs found
Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations
Vegetation has different adjustable properties for adaptation to its environment. Examples include stomatal conductance at short time scale (minutes), leaf area index and fine root distributions at longer time scales (days-months) and species compositio
Adding our leaves: A communityâ wide perspective on research directions in ecohydrology
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154539/1/hyp13693.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154539/2/hyp13693_am.pd
Challenges and opportunities in land surface modelling of savanna ecosystems
The savanna complex is a highly diverse global biome that occurs within the seasonally dry tropical to sub-tropical equatorial latitudes and are structurally and functionally distinct from grasslands and forests. Savannas are open-canopy environments that encompass a broad demographic continuum, often characterised by a changing dominance between C3-tree and C4-grass vegetation, where frequent environmental disturbances such as fire modulates the balance between ephemeral and perennial life forms. Climate change is projected to result in significant changes to the savanna floristic structure, with increases to woody biomass expected through CO2 fertilisation in mesic savannas and increased tree mortality expected through increased rainfall interannual variability in xeric savannas. The complex interaction between vegetation and climate that occurs in savannas has traditionally challenged terrestrial biosphere models (TBMs), which aim to simulate the interaction between the atmosphere and the land surface to predict responses of vegetation to changing in environmental forcing. In this review, we examine whether TBMs are able to adequately represent savanna fluxes and what implications potential deficiencies may have for climate change projection scenarios that rely on these models. We start by highlighting the defining characteristic traits and behaviours of savannas, how these differ across continents and how this information is (or is not) represented in the structural framework of many TBMs. We highlight three dynamic processes that we believe directly affect the water use and productivity of the savanna system: phenology, root-water access and fire dynamics. Following this, we discuss how these processes are represented in many current-generation TBMs and whether they are suitable for simulating savanna fluxes.Finally, we give an overview of how eddy-covariance observations in combination with other data sources can be used in model benchmarking and intercomparison frameworks to diagnose the performance of TBMs in this environment and formulate road maps for future development. Our investigation reveals that many TBMs systematically misrepresent phenology, the effects of fire and root-water access (if they are considered at all) and that these should be critical areas for future development. Furthermore, such processes must not be static (i.e. prescribed behaviour) but be capable of responding to the changing environmental conditions in order to emulate the dynamic behaviour of savannas. Without such developments, however, TBMs will have limited predictive capability in making the critical projections needed to understand how savannas will respond to future global change
Long-Term Soil Structure Observatory for Monitoring Post-Compaction Evolution of Soil Structure
The projected intensification of agriculture to meet food targets of a rapidly growing world population are likely to accentuate already acute problems of soil compaction and deteriorating soil structure in many regions of the world.
The key role of soil structure for soil functions, the sensitivity of soil structure to agronomic management practices, and the lack of reliable observations and metrics for soil structure recovery rates after compaction motivated the establishment of a long-term Soil Structure Observatory (SSO) at the Agroscope research institute in Zürich, Switzerland. The primary objective of the SSO is to provide long-term observation data on soil structure evolution after disturbance by compaction, enabling quantification of compaction recovery rates and times. The SSO was designed to provide information on recovery of compacted soil under different post-compaction soil management regimes, including natural recovery of bare and vegetated soil as well as recovery with and without soil tillage. This study focused on the design of the SSO and the characterization of the pre- and post-compaction state of the field. We deployed a monitoring network for continuous observation of soil state variables related to hydrologic and biophysical functions (soil water content, matric potential, temperature, soil air O2 and CO2 concentrations, O2 diffusion rates, and redox states) as well as periodic sampling and in situ measurements of infiltration, mechanical impedance, soil porosity, gas and water transport properties, crop yields, earthworm populations,
and plot-scale geophysical measurements. Besides enabling quantification of recovery rates of compacted soil, we expect that data provided by the SSO will help improve our general understanding of soil structure dynamics
Water science must be Open Science
Since water is a common good, the outcome of water-related research should be accessible to everyone. Since Open Science is more than just open access research articles, journals must work with the research community to enable fully open and FAIR scienc
Leaf-scale experiments reveal an important omission in the Penman-Monteith equation
The Penman–Monteith (PM) equation is commonly considered the most advanced physically based approach to computing transpiration rates from plants considering stomatal conductance and atmospheric drivers. It has been widely evaluated at the canopy scale, where aerodynamic and canopy resistance to water vapour are difficult to estimate directly, leading to various empirical corrections when scaling from leaf to canopy. Here, we evaluated the PM equation directly at the leaf scale, using a detailed leaf energy balance model and direct measurements in a controlled, insulated wind tunnel using artificial leaves with fixed and predefined stomatal conductance. Experimental results were consistent with a detailed leaf energy balance model; however, the results revealed systematic deviations from PM-predicted fluxes, which pointed to fundamental problems with the PM equation. Detailed analysis of the derivation by Monteith(1965) and subsequent amendments revealed two errors: one in neglecting two-sided exchange of sensible heat by a planar leaf, and the other related to the representation of hypostomatous leaves, which are very common in temperate climates. The omission of two-sided sensible heat flux led to bias in simulated latent heat flux by the PM equation, which was as high as 50% of the observed flux in some experiments. Furthermore, we found that the neglect of feedbacks between leaf temperature and radiative energy exchange can lead to additional bias in both latent and sensible heat fluxes. A corrected set of analytical solutions for leaf temperature as well as latent and sensible heat flux is presented, and comparison with the original PM equation indicates a major improvement in reproducing experimental results at the leaf scale. The errors in the original PM equation and its failure to reproduce experimental results at the leaf scale (for which it was originally derived) propagate into inaccurate sensitivities of transpiration and sensible heat fluxes to changes in atmospheric conditions, such as those associated with climate change (even with reasonable present-day performance after calibration). The new formulation presented here rectifies some of the shortcomings of the PM equation and could provide a more robust starting point for canopy representation and climate change studies.ISSN:1027-5606ISSN:1607-793
- …