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Introduction



Hydrological models

• Hydrology is the study of the movement of water in the environment.

• Hydrologists develop different types of models to understand water dynamics.

• The Hydrologiska Byr̊ans Vattenbalansavdelning (HBV) model and its variants are

used in over 50 countries to model hydrological systems (Bergstrom, 2006).

• The HBV model links precipitation with hydrological catchment outflow. The

calibrated models are used for flood prediction, water management etc.
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Problem statement

• Today, Bayesian inference is widely used in hydrology for parameter identification

(Marshall, Nott, & Sharma, 2005).

• However, Bayesian model selection criteria are not widely used, even though the

model selection problem is equally important for practitioners.
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Why?

1. Computational expense.

2. Poor robustness of algorithms for moderate dimensional problems.

3. Difficulty of implementing those algorithms.

• Require gradients, not always available.

• Technical or mathematical expertise.
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Main contributions

1. Algorithmic

• We introduce REHMC+TI, a combination of replica exchange (RE), Hamiltonian

Monte Carlo (HMC) and thermodynamic integration (TI) for efficient and robust

parameter and marginal likelihood estimation.

2. Statistical

• We introduce formal posterior predictive checks for ODE-based models.

3. Methodological

• Algorithms are implemented in the differentiable programming language TensorFlow

Probability for flexible future use.
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Data



Time series data from Magela Creek Australia
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Figure 1: Plot of observed discharge and precipitation from 01-01-1980 to 31-03-1980.
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Time series data

• Magela Creek is a gauged catchment.

• The variable of interest is discharge (Q mmday−1).

• The independent variables:

• Precipitation (mmday−1).

• Actual evapotranspiration (mmday−1).
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Model development



HBV-type models as an ODE system

We develop a system of ordinary differential equations to mimic the HBV model.

• P : Precipitation (L3T−1)

• Ea : Actual evapotranspiration (L3T−1)

• Q1 : Discharge (L3T−1)

• k1 : outflow recession coefficient (T−1)

• k1,2 : inter-bucket recession coefficient (T−1)

dV1

dt
= P − Ea − k1,2V1 −Q1

= P − Ea − k1,2V1 − k1V1.

P

V1

Ea

k1,2V1

Q1
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Multi-bucket HBV model

• Vt :=
dV
dt is the derivative of the state with respect to the time

variable t.

• V̂ ∈ Rn are the initial conditions.

(V1)t = P − Ea − k1V1,

(Vi)t = k(i−1)(i)Vi−1 − kiVi, i = 2, . . . , n− 1, n > 2,

(Vn)t = k(n−1)(n)Vn−1 − knVn,

V (t = 0) = V̂,

Ea =
Ep

Vmax
V1,

Q =
n∑

i=1

kiVi.

P

V1

V2

Vn

Ea

k1,2V1

kn−1,nVn

Q1

Q2

Qn
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Likelihood construction

y = GobsGsol(θ) + η,

η ∼ N (0, σ2Ip)

• Gsol : Rq → X maps the parameter vector θ ∈ Rq, with q = 3n, to the total

discharge Q ∈ X through solving the ODE system.

• Gobs : Evaluates the total discharge at specific time points {t1, . . . , tp}.
• η : noise, assumed Gaussian with covariance σ2Ip ∈ Rp×p with Ip the identity

matrix.
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Likelihood construction

G := GobsGsol

y|θ ∼ N (G(θ), σ2Ip)

Gsol Gobs
θ ∈ Rq Q ∈ X y ∈ Rp

Figure 2: Schematic representation of likelihood construction
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Bayesian inference

Theorem (Bayes theorem)

p(θn|Mn, y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y|θn,Mn)

prior︷ ︸︸ ︷
p(θn|Mn)

p(y|Mn)︸ ︷︷ ︸
marginal (averaged) likelihood

=
p(y|θn,Mn)p(θn|Mn)∫
p(y|θn,Mn)p(θn|Mn)dθn

.
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Bayesian model comparison

• The log Bayes factor log BFij is obtained by taking the ratio of the log marginal

likelihoods of the i-th and j-th models

log BFij = log p(y|Mi)− log p(y|Mj)

= log

∫
p(y|θi,Mi)p(θi|Mi) dθi − log

∫
p(y|θj ,Mj)p(θj |Mj) dθj .

• log BFij > 1 is in favour of model i.
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Computational aspects



Key techniques

There is usually no analytic solution for the marginal likelihood. Thus, we use

sampling-based methods:

1. Thermodynamic integration: Robust method for marginal likelihood estimation

that does not require a priori choice of bridge/importance distribution.

2. Hamiltonian Monte Carlo: Scales better in high dimensions even when parameters

show strong correlations.

3. Replica exchange: Accelerates chain mixing and can handle multimodality, which

is inherent in ODE based models.

leading to Replica Exchange Hamiltonian Monte Carlo (REHMC).
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Thermodynamic integration

We first define the power posterior which continuously connects the prior and posterior

through the inverse temperature parameter β

p(y|β) =
∫ [

p(y|θ)
]β
π(θ) dθ, 0 ≤ β ≤ 1

Taking the logarithm and differentiating gives

∂

∂β
log p(y|β) = 1

p(y|β)
∂

∂β
p(y|β)

=
1

p(y|β)

∫
∂

∂β

[
p(y|θ)

]β
π(θ) dθ.
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Thermodynamic integration

Further simplifying with the identity f ′(x) = ax log a ⇐⇒ f(x) = ax gives

∂

∂β
log p(y|β) = 1

p(y|β)

∫ [
p(y|θ)

]β
log p(y|θ)π(θ) dθ

=

∫ [
p(y|θ)

]β
π(θ)

p(y|β) log p(y|θ) dθ

= Ep(θ|y,β)[log p(y|θ)].

giving the final result:

log p(y) =

∫ 1

0
Ep(θ|y,β)[log p(y|θ)] dβ,
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Thermodynamic integration

The trapezoidal + Monte Carlo estimate of the log marginal likelihood can then be

written

log p(y) ≈
N∑
j=1

(βj − βj−1)

2

[
1

S

S∑
i=1

log p(y|θi, βj) +
1

S

S∑
i=1

log p(y|θi, βj−1)

]
,

where N is the number of integration points and S are the number of Monte Carlo

samples.
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Replica exchange Hamiltonian Monte Carlo (REHMC)

HMC
β1

HMC β2

HMC
β3

HMC

β4

HMC

βNC
ha
in

sw
ap
s

REMC TI log p(y|Mm)

log p(y|θj , βj) ∀j ∈ 1 . . . , N.
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Effectiveness of REHMC
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Results



Synthetic example

• Two sets of experiments:

1. Data generated from the model M2 with the least number of parameters

2. Data generated from model M3 with the highest number of parameters.

• The precipitation and potential evapotranspiration are from the Magala Creek

dataset.

• We assigned lognormal priors to all model parameters except σ2 ∼ IG(α, β).

• The parameters associated with upper buckets are assigned priors with faster

timescales (runoff processes vs storage processes).
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log marginal likelihood

• Experiment 1, M2 is the data generating model.

Table 1: log marginal likelihood

M2 M3 M4

201.336 194.722 179.406

• Experiment 2 M3 is the data generating model.

Table 2: log marginal likelihood

M2 M3 M4

74.815 158.716 152.581

Based on the BF interpretation table by (Kass & Raftery, 1995) we have decisive

evidence in favour of the data generating models.
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Posterior predictive checks
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Figure 3: Graphical posterior predictive check
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Real discharge data



Results: Real-world data

Table 3: Results using real discharge data

M2(95% CI) M3(95% CI) M4(95% CI)

k1 1.281(0.893, 1.708) 1.255(0.851, 1.674) 1.298(0.863, 1.752)

k2 1.506(0.860, 2.180) 1.863(1.142, 2.703) 2.060(1.227, 2.849)

k3 - 1.342(0.719, 1.997) 1.408(0.775, 2.107

k4 - - 1.072(0.574, 1.559)

k1,2 1.182(0.788, 1.638) 2.296(0.589, 1.310) 2.292(1.325, 3.327)

k2,3 - 0.711(0.481, 0.978) 0.731(0.451, 1.008)

k3,4 - - 0.828(0.541, 1.170)

V̂1 1.066(0.026, 2.776) 1.235(0.027, 3.336) 1.190(0.029, 3.154)

V̂2 0.821(0.061, 1.902) 1.077(0.061, 2.871) 0.997(0.059, 2.557)

V̂3 - 1.220(1.181, 0.029) 1.152(0.029 , 3.228)

V̂4 - - 1.138(0.029, 3.066)

Vmax 0.841(0.585, 1.109) 0.941(0.635, 1.251) 0.842(0.595, 1.150)

σ2 7.591(6.661, 8.787) 7.623(6.620, 8.697) 7.633(6.602, 8.750)

logp(y|M) -388.826 -386.716 -388.978
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Conclusions

1. We have introduced a modelling framework in hydrology that consists of

parameter estimation, model selection, and posterior predictive checks.

2. We have illustrated using the gradient-based sampler REHMC that the marginal

log-likelihood can be estimated efficiently for ODE-type models.

3. Our framework can be used as an efficient alternative to widely used gradient-free

samplers.

4. The entire framework has been implemented in the differentiable programming

language TensorFlow Probability.
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