5 research outputs found

    Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: an evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice.: Cav3.1/3.2 channel functions in sperm physiology

    Get PDF
    International audienceIn spermatozoa, voltage-dependent calcium channels (VDCC) have been involved in different cellular functions like acrosome reaction (AR) and sperm motility. Multiple types of VDCC are present and their relative contribution is still a matter of debate. Based mostly on pharmacological studies, low-voltage-activated calcium channels (LVA-CC), responsible of the inward current in spermatocytes, were described as essential for AR in sperm. The development of Ca(V)3.1 or Ca(V)3.2 null mice provided the opportunity to evaluate the involvement of such LVA-CC in AR and sperm motility, independently of pharmacological tools. The inward current was fully abolished in spermatogenic cells from Ca(V)3.2 deficient mice. This current is thus only due to Ca(V)3.2 channels. We showed that Ca(V)3.2 channels were maintained in sperm by Western-blot and immunohistochemistry experiments. Calcium imaging experiments revealed that calcium influx in response to KCl was reduced in Ca(V)3.2 null sperm in comparison to control cells, demonstrating that Ca(V)3.2 channels were functional. On the other hand, no difference was noticed in calcium signaling induced by zona pellucida. Moreover, neither biochemical nor functional experiments, suggested the presence of Ca(V)3.1 channels in sperm. Despite the Ca(V)3.2 channels contribution in KCl-induced calcium influx, the reproduction parameters remained intact in Ca(V)3.2 deficient mice. These data demonstrate that in sperm, besides Ca(V)3.2 channels, other types of VDCC are activated during the voltage-dependent calcium influx of AR, these channels likely belonging to high-voltage activated Ca(2+) channels family. The conclusion is that voltage-dependent calcium influx during AR is due to the opening of redundant families of calcium channels

    Canaux calciques des spermatozoïdes de mammifères (caractérisation des interactions fonctionnelles et moléculaires au cours de la réaction acrosomique)

    No full text
    La réaction acrosomique de Mammifère nécessite l'ouverture successive de trois canaux calciques : un canal calcique activé par de faibles dépolarisations (LVA), le récepteur à l'IP3 et un canal activé par la vidange des stocks (SOC) TRPC2. Nos données montrent une intéressante interaction fonctionnelle entre le canal LVA et les protéines dont l'activité est liée au niveau de remplissage du réticulum (vraisemblablement les canaux TRPCs et l'IP3R). Toute la signalisation calcique de la RA est sous le contrôle du canal LVA qui est le premier à s'activer. En utilisant les souris déficientes pour Cav3.1, Cav3.2, nous avons montré que la sous-unité a1H est la sous-unité majoritaire dans les cellules spermatogéniques sauvages. Nos données fournissent de nouvelles hypothèses concernant l'activation de TRPC2 : celle-ci pourrait être due à des modifications de son interaction avec la junctate et l'IP3R, induite par la vidange des stocks.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Junctate, an inositol 1,4,5-triphosphate receptor associated protein, is present in rodent sperm and binds TRPC2 and TRPC5 but not TRPC1 channels

    Get PDF
    The acrosome reaction, the first step of the fertilization, is induced by calcium influx through Canonical Transient Receptor Potential channels (TRPC). The molecular nature of TRPC involved is still a debated question. In mouse, TRPC2 plays the most important role and is responsible for the calcium plateau. However, TRPC1 and TRPC5 are also localized in the acrosomal crescent of the sperm head and may participate in calcium signaling, especially in TRPC2-deficient mice. Activation of TRPC channels is an unresolved question in germ and somatic cells as well. In particular, in sperm, little is known concerning the molecular events leading to TRPC2 activation. From the discovery of IP3R binding domains on TRPC2, it has been suggested that TRPC channel activation may be due to a conformational coupling between IP3R and TRPC channels. Moreover, recent data demonstrate that junctate, an IP3R associated protein, participates also in the gating of some TRPC. In this study, we demonstrate that junctate is expressed in sperm and co-localizes with the IP3R in the acrosomal crescent of the anterior head of rodent sperm. Consistent with its specific localization, we show by pull-down experiments that junctate interacts with TRPC2 and TRPC5 but not with TRPC1. We focused on the interaction between TRPC2 and junctate, and we show that the N-terminus of junctate interacts with the C-terminus of TRPC2, both in vitro and in a heterologous expression system. We show that junctate binds to TRPC2 independently of the calcium concentration and that the junctate binding site does not overlap with the common IP3R/calmodulin binding sites. TRPC2 gating is downstream phospholipase C activation, which is a key and necessary step during the acrosome reaction. TRPC2 may then be activated directly by diacylglycerol (DAG), as in neurons of the vomeronasal organ. In the present study, we investigated whether DAG could promote the acrosome reaction. We found that 100 microM OAG, a permeant analogue, was unable to trigger the acrosome reaction. Altogether, these results provide a new hypothesis concerning sperm TRPC2 gating: TRPC2 activation may be due to modifications of its interaction with both junctate and IP3R, induced by depletion of calcium from the acrosomal vesicle
    corecore