5 research outputs found

    Sources of riverine mercury across the Mackenzie River Basin; inferences from a combined Hg\\C isotopes and optical properties approach

    Get PDF
    The Arctic environment harbors a complex mosaic of mercury (Hg) and carbon (C) reservoirs, some of which are rapidly destabilizing in response to climate warming. The sources of riverine Hg across the Mackenzie River basin (MRB) are uncertain, which leads to a poor understanding of potential future release. Measurements of dissolved and particulate mercury (DHg, PHg) and carbon (DOC, POC) concentration were performed, along with analyses of Hg stable isotope ratios (incl. Delta 199Hg, delta 202Hg), radiocarbon content (Delta 14C) and optical properties of DOC of river water. Isotopic ratios of Hg revealed a closer association to terrestrial Hg reservoirs for the particulate fraction, while the dissolved fraction was more closely associated with atmospheric deposition sources of shorter turnover time. There was a positive correlation between the Delta 14C-OC and riverine Hg concentration for both particulate and dissolved fractions, indicating that waters transporting older-OC (14C-depleted) also contained higher levels of Hg. In the dissolved fraction, older DOC was also associated with higher molecular weight, aromaticity and humic content, which are likely associated with higher Hg-binding potential. Riverine PHg concentration increased with turbidity and SO4 concentration. There were large contrasts in Hg concentration and OC age and quality among the mountain and lowland sectors of the MRB, which likely reflect the spatial distribution of various terrestrial Hg and OC reservoirs, including weathering of sulfate minerals, erosion and extraction of coal deposits, thawing permafrost, forest fires, peatlands, and forests. Results revealed major differences in the sources of particulate and dissolved riverine Hg, but nonetheless a common positive association with olde

    Improved environmental status : 50 years of declining fish mercury levels in boreal and subarctic Fennoscandia

    Get PDF
    Temporally (1965–2015) and spatially (55°–70°N) extensive records of total mercury (Hg) in freshwater fish showed consistent declines in boreal and subarctic Fennoscandia. The database contains 54 560 fish entries (n: pike > perch ≫ brown trout > roach ≈ Arctic charr) from 3132 lakes across Sweden, Finland, Norway, and Russian Murmansk area. 74% of the lakes did not meet the 0.5 ppm limit to protect human health. However, after 2000 only 25% of the lakes exceeded this level, indicating improved environmental status. In lakes where local pollution sources were identified, pike and perch Hg concentrations were significantly higher between 1965 and 1990 compared to values after 1995, likely an effect of implemented reduction measures. In lakes where Hg originated from long-range transboundary air pollution (LRTAP), consistent Hg declines (3–7‰ per year) were found for perch and pike in both boreal and subarctic Fennoscandia, suggesting common environmental controls. Hg in perch and pike in LRTAP lakes showed minimal declines with latitude, suggesting that drivers affected by temperature, such as growth dilution, counteracted Hg loading and food web exposure. We recommend that future fish Hg monitoring sampling design should include repeated sampling and collection of pollution history, water chemistry, fish age, and stable isotopes to enable evaluation of emission reduction policies

    Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers

    No full text
    This study compared the toxic effects of adding chromium (Cr), zinc (Zn), lead (Pb), molybdenum (Mo), nickel (Ni), and cadmium (Cd) at three dose levels to mor layer samples in laboratory experiments. Microbial activity in the form of soil respiration was monitored for 64 days. At the end of the experimental period, the composition of the soil microbial community structure was analysed by phospholipid fatty acid (PLFA) analysis. The metals added induced changes in the microbial community structure and affected respiration negatively, indicating toxicity. The microbial community structure (principal component analysis of the PLFA pattern) for all metals was significantly related to microbial activity (cumulative respiration), indicating intimate links between microbial community structure and activity. The most striking result in this study was that the shift in the microbial community because of metal stress was similar for all metals. Thus, the PLFA i16:0 increased most in relative abundance in metal-polluted soils, followed by other PLFAs indicative of Gram-positive bacteria (10Me16:0, 10Me17:0, 10Me18:0, a17:0 and br18:0). The PLFA 16:1 omega 5 was consistently negatively affected by metal stress, as were the PLFAs 18:1, 18:1 omega 7 and 19:1a. However, a significant separation between Cr- and Cd-polluted soils was observed in the response of the PLFA cy19:0, which decreased in abundance with Cr stress, and increased with Cd stress. Furthermore, the PLFA 18:2w6, indicating fungi, only increased with Cr and Zn stress. The effective doses of the metals, ranked with regard to background metal concentrations, decreased in the order: Zn > Cr > Pb > Mo > Ni > Cd. We concluded that interpretation of results of microbial activity from experiments of metal toxicity should include microbial structural patterns and background metal concentrations

    Mercury evasion from a boreal peatland shortens the timeline for recovery from legacy pollution

    Get PDF
    Peatlands are a major source of methylmercury that contaminates downstream aquatic food webs. The large store of mercury (Hg) in peatlands could be a source of Hg for over a century even if deposition is dramatically reduced. However, the reliability of Hg mass balances can be questioned due to missing long-term land-atmosphere flux measurements. We used a novel micrometeorological system for continuous measurement of Hg peatland-atmosphere exchange to derive the first annual Hg budget for a peatland. The evasion of Hg (9.4 mu g m(-2) yr(-1)) over the course of a year was seven times greater than stream Hg export, and over two times greater than wet bulk deposition to the boreal peatland. Measurements of dissolved gaseous Hg in the peat pore water also indicate Hg evasion. The net efflux may result from recent declines in atmospheric Hg concentrations that have turned the peatland from a net sink into a source of atmospheric Hg. This net Hg loss suggests that open boreal peatlands and downstream ecosystems can recover more rapidly from past atmospheric Hg deposition than previously assumed. This has important implications for future levels of methylmercury in boreal freshwater fish and the estimation of historical Hg accumulation rates from peat profiles
    corecore