263 research outputs found

    Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB

    Get PDF
    We present the first assessment of the impact of land use change (LUC) to second-generation (2G) bioenergy crops on ecosystem services (ES) resolved spatially for Great Britain (GB). A systematic approach was used to assess available evidence on the impacts of LUC from arable, semi-improved grassland or woodland/forest, to 2G bioenergy crops, for which a quantitative ‘threat matrix’ was developed. The threat matrix was used to estimate potential impacts of transitions to either Miscanthus, short-rotation coppice (SRC, willow and poplar) or short-rotation forestry (SRF). The ES effects were found to be largely dependent on previous land uses rather than the choice of 2G crop when assessing the technical potential of available biomass with a transition from arable crops resulting in the most positive effect on ES. Combining these data with constraint masks and available land for SRC and Miscanthus (SRF omitted from this stage due to lack of data), south-west and north-west England were identified as areas where Miscanthus and SRC could be grown, respectively, with favourable combinations of economic viability, carbon sequestration, high yield and positive ES benefits. This study also suggests that not all prospective planting of Miscanthus and SRC can be allocated to agricultural land class (ALC) ALC 3 and ALC 4 and suitable areas of ALC 5 are only minimally available. Beneficial impacts were found on 146 583 and 71 890 ha when planting Miscanthus or SRC, respectively, under baseline planting conditions rising to 293 247 and 91 318 ha, respectively, under 2020 planting scenarios. The results provide an insight into the interplay between land availability, original land uses, bioenergy crop type and yield in determining overall positive or negative impacts of bioenergy cropping on ecosystems services and go some way towards developing a framework for quantifying wider ES impacts of this important LUC

    Metabolic Effects of Acute Thiamine Depletion Are Reversed by Rapamycin in Breast and Leukemia Cells

    Get PDF
    Thiamine-dependent enzymes (TDEs) control metabolic pathways that are frequently altered in cancer and therefore present cancer-relevant targets. We have previously shown that the recombinant enzyme thiaminase cleaves and depletes intracellular thiamine, has growth inhibitory activity against leukemia and breast cancer cell lines, and that its growth inhibitory effects were reversed in leukemia cell lines by rapamycin. Now, we first show further evidence of thiaminase therapeutic potential by demonstrating its activity against breast and leukemia xenografts, and against a primary leukemia xenograft. We therefore further explored the metabolic effects of thiaminase in combination with rapamycin in leukemia and breast cell lines. Thiaminase decreased oxygen consumption rate and increased extracellular acidification rate, consistent with the inhibitory effect of acute thiamine depletion on the activity of the TDEs pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes; these effects were reversed by rapamycin. Metabolomic studies demonstrated intracellular thiamine depletion and the presence of the thiazole cleavage product in thiaminase-treated cells, providing validation of the experimental procedures. Accumulation of ribose and ribulose in both cell lines support the thiaminase-mediated suppression of the TDE transketolase. Interestingly, thiaminase suppression of another TDE, branched chain amino ketoacid dehydrogenase (BCKDH), showed very different patterns in the two cell lines: in RS4 leukemia cells it led to an increase in BCKDH substrates, and in MCF-7 breast cancer cells it led to a decrease in BCKDH products. Immunoblot analyses showed corresponding differences in expression of BCKDH pathway enzymes, and partial protection of thiaminase growth inhibition by gabapentin indicated that BCKDH inhibition may be a mechanism of thiaminase-mediated toxicity. Surprisingly, most of thiaminase-mediated metabolomic effects were also reversed by rapamycin. Thus, these studies demonstrate that acute intracellular thiamine depletion by recombinant thiaminase results in metabolic changes in thiamine-dependent metabolism, and demonstrate a previously unrecognized role of mTOR signaling in the regulation of thiamine-dependent metabolism

    Cold Atmospheric Plasma as a Potential Tool for Multiple Myeloma Treatment

    Get PDF
    Multiple myeloma (MM) is a fatal and incurable hematological malignancy thus new therapy need to be developed. Cold atmospheric plasma, a new technology that could generate various active species, could efficiently induce various tumor cells apoptosis. More details about the interaction of plasma and tumor cells need to be addressed before the application of gas plasma in clinical cancer treatment. In this study, we demonstrate that He+O2 plasma could efficiently induce myeloma cell apoptosis through the activation of CD95 and downstream caspase cascades. Extracellular and intracellular reactive oxygen species (ROS) accumulation is essential for CD95-mediated cell apoptosis in response to plasma treatment. Furthermore, p53 is shown to be a key transcription factor in activating CD95 and caspase cascades. More importantly, we demonstrate that CD95 expression is higher in tumor cells than in normal cells in both MM cell lines and MM clinical samples, which suggests that CD95 could be a favorable target for plasma treatment as it could selectively inactivate myeloma tumor cells. Our results illustrate the molecular details of plasma induced myeloma cell apoptosis and it shows that gas plasma could be a potential tool for myeloma therapy in the future

    Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring

    Get PDF
    We use observations from the April 2008 NASA ARCTAS aircraft campaign to the North American Arctic, interpreted with a global 3-D chemical transport model (GEOS-Chem), to better understand the sources and cycling of hydrogen oxide radicals (HOx≡H+OH+peroxy radicals) and their reservoirs (HOy≡HOx+peroxides) in the springtime Arctic atmosphere. We find that a standard gas-phase chemical mechanism overestimates the observed HO2 and H2O2 concentrations. Computation of HOx and HOy gas-phase chemical budgets on the basis of the aircraft observations also indicates a large missing sink for both. We hypothesize that this could reflect HO2 uptake by aerosols, favored by low temperatures and relatively high aerosol loadings, through a mechanism that does not produce H2O2. We implemented such an uptake of HO2 by aerosol in the model using a standard reactive uptake coefficient parameterization with γ(HO2) values ranging from 0.02 at 275 K to 0.5 at 220 K. This successfully reproduces the concentrations and vertical distributions of the different HOx species and HOy reservoirs. HO2 uptake by aerosol is then a major HOx and HOy sink, decreasing mean OH and HO2 concentrations in the Arctic troposphere by 32% and 31% respectively. Better rate and product data for HO2 uptake by aerosol are needed to understand this role of aerosols in limiting the oxidizing power of the Arctic atmosphere

    Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations

    Get PDF
    We determine enhancement ratios for NO<sub>x</sub>, PAN, and other NO<sub>y</sub> species from boreal biomass burning using aircraft data obtained during the ARCTAS-B campaign and examine the impact of these emissions on tropospheric ozone in the Arctic. We find an initial emission factor for NO<sub>x</sub> of 1.06 g NO per kg dry matter (DM) burned, much lower than previous observations of boreal plumes, and also one third the value recommended for extratropical fires. Our analysis provides the first observational confirmation of rapid PAN formation in a boreal smoke plume, with 40% of the initial NO<sub>x</sub> emissions being converted to PAN in the first few hours after emission. We find little clear evidence for ozone formation in the boreal smoke plumes during ARCTAS-B in either aircraft or satellite observations, or in model simulations. Only a third of the smoke plumes observed by the NASA DC8 showed a correlation between ozone and CO, and ozone was depleted in the plumes as often as it was enhanced. Special observations from the Tropospheric Emission Spectrometer (TES) also show little evidence for enhanced ozone in boreal smoke plumes between 15 June and 15 July 2008. Of the 22 plumes observed by TES, only 4 showed ozone increasing within the smoke plumes, and even in those cases it was unclear that the increase was caused by fire emissions. Using the GEOS-Chem atmospheric chemistry model, we show that boreal fires during ARCTAS-B had little impact on the median ozone profile measured over Canada, and had little impact on ozone within the smoke plumes observed by TES

    Tumor necrosis factor alpha drugs in rheumatoid arthritis: systematic review and metaanalysis of efficacy and safety

    Get PDF
    Es reproducción del documento publicado en http://dx.doi.org/10.1186/1471-2474-9-52Background: To analyse available evidence on the efficacy and safety of anti-TNF alpha drugs (infliximab, etanercept and adalimumab) for treating rheumatoid arthritis (RA). Methods: We searched systematically for randomised controlled clinical trials on treatment of RA with anti-TNF alpha drugs, followed by a systematic review with metaanalysis. Trials were searched from MEDLINE, EMBASE and Cochrane Library databases. The American College of Rheumatology (ACR) efficacy response criteria were used. Safety parameters provided by the trials were also assessed. Positive and undesired effects were estimated using combined relative risks (RR), number needed to treat (NNT) and number needed to harm (NNH). Heterogeneity was evaluated by Cochrane's Q and I-2 statistics. Results: Thirteen trials (7087 patients) met the inclusion criteria. The combined RR to achieve a therapeutic response to treatment with recommended doses of any anti-TNF alpha drug was 1.81 (95% CI 1.43 - 2.29) with a NNT of 5 (5 - 6) for ACR20. NNT for ACR50 [5 (5 - 6)] and ACR70 [7 (7 - 9)] were similar. Overall therapeutic effects were also similar regardless of the specific anti-TNF alpha drug used and when higher than recommended doses were administered. However, lower than recommended doses elicited low ACR70 responses (NNT 15). Comparison of anti-TNF alpha drugs plus methotrexate (MTX) with MTX alone in patients with insufficient prior responses to MTX showed NNT values of 3 for ACR20, 4 for ACR50 and 8 for ACR70. Comparison of anti-TNF alpha drugs with placebo showed a similar pattern. Comparisons of anti-TNF alpha drugs plus MTX with MTX alone in patients with no previous resistance to MTX showed somewhat lower effects. Etanercept and adalimumab administered as monotherapy showed effects similar to those of MTX. Side effects were more common among patients receiving anti-TNF alpha drugs than controls (overall combined NNH 27). Patients receiving infliximab were more likely to drop out because of side effects (NNH 24) and to suffer severe side effects (NNH 31), infections (NNH 10) and infusion reactions (NNH 9). Patients receiving adalimumab were also more likely to drop out because of side effects (NNH 47) and to suffer injection site reactions (NNH 22). Patients receiving etanercept were less likely to drop out because of side effects (NNH for control versus etanercept 26) but more likely to experience injection site reactions (NNH 5). Conclusion: Anti-TNF alpha drugs are effective in RA patients, with apparently similar results irrespective of the drug administered. Doses other than those recommended are also beneficial. The main factor influencing therapeutic efficacy is the prior response to DMARD treatment. The effect of treatment with etanercept or adalimumab does not differ from that obtained with MTX. The published safety profile for etanercept is superior but the fact that no patients are treated with higher than recommended doses requires explanation

    Radiation Induced Apoptosis of Murine Bone Marrow Cells is Independent of Early Growth Response 1 (EGR1)

    Get PDF
    An understanding of how each individual 5q chromosome critical deleted region (CDR) gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs). Early Growth Response 1 (EGR1) is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell) quiescence as well as the master regulator of apoptosis—p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA) nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies
    corecore