45 research outputs found

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel.

    Get PDF
    Brugada syndrome (BrS) is a condition defined by ST-segment alteration in right precordial leads and a risk of sudden death. Because BrS is often associated with right bundle branch block and the TRPM4 gene is involved in conduction blocks, we screened TRPM4 for anomalies in BrS cases. The DNA of 248 BrS cases with no SCN5A mutations were screened for TRPM4 mutations. Among this cohort, 20 patients had 11 TRPM4 mutations. Two mutations were previously associated with cardiac conduction blocks and 9 were new mutations (5 absent from ~14'000 control alleles and 4 statistically more prevalent in this BrS cohort than in control alleles). In addition to Brugada, three patients had a bifascicular block and 2 had a complete right bundle branch block. Functional and biochemical studies of 4 selected mutants revealed that these mutations resulted in either a decreased expression (p.Pro779Arg and p.Lys914X) or an increased expression (p.Thr873Ile and p.Leu1075Pro) of TRPM4 channel. TRPM4 mutations account for about 6% of BrS. Consequences of these mutations are diverse on channel electrophysiological and cellular expression. Because of its effect on the resting membrane potential, reduction or increase of TRPM4 channel function may both reduce the availability of sodium channel and thus lead to BrS

    Rare coding variants in CTSO , a potential new actor of arterial remodeling, are associated to familial intracranial aneurysm

    No full text
    Background Intracranial aneurysm (IA) is a common cerebrovascular abnormality characterized by localized dilation and wall thinning in intracranial arteries, that frequently leads to fatal vascular rupture. The mechanisms underlying IA formation, growth and rupture are mostly unknown, and while increasing evidence suggest a genetic component of IA, identification of specific genes or causal molecular pathways remains largely inconclusive and only a small fraction of the risk attributable to genetics for IA in the general population. Methods: Here, we combined whole exome sequencing and identity-by -descent analyses with functional investigations to identify rare IA predisposing variants in familial forms of IA and understand their contribution to the pathophysiology of IA. Results We identified two rare missense variants in the CTSO gene shared by all the affected relatives in two large pedigrees with multiple IA-affected relative. CTSO encodes for the cysteine-type papain-like cathepsin CTSO. Functional analyses revealed that CTSO acts as an extracellular protease controlling vascular smooth muscle cell migration and adhesion to the extracellular matrix. CTSO depletion, as well as expression of the two CTSO variants, which were poorly secreted, led to increase the amount of fibronectin. This effect is associated with a marked increase in VSMC stiffness which was rescued by exogenous CTSO. Conclusions This report identifies rare CTSO variants in familial IA patients and suggests that the increased susceptibility to IA induced by these variants is likely related to their primary effects on the vascular tissue, and more particularly on the media layer of the wall of cerebral arteries

    Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/KATP channel

    No full text
    BACKGROUND: Early repolarization in the inferolateral leads has been recently recognized as a frequent syndrome associated with idiopathic ventricular fibrillation (VF). We report the case of a patient presenting dramatic changes in the ECG in association with recurrent VF in whom a novel genetic variant has been identified. CASE REPORT: This young female (14 years) was resuscitated in 2001 following an episode of sudden death due to VF. All examinations including coronary angiogram with ergonovine injection, MRI, and flecainide or isoproterenol infusion were normal. The patient had multiple (>100) recurrences of VF unresponsive to beta-blockers, lidocaine/mexiletine, verapamil, and amiodarone. Recurrences of VF were associated with massive accentuation of the early repolarization pattern at times mimicking acute myocardial ischemia. Coronary angiography during an episode with 1.2 mV J/ST elevation was normal. Isoproterenol infusion acutely suppressed electrical storms, while quinidine eliminated all recurrences of VF and restored a normal ECG over a follow-up of 65 months. Genomic DNA sequencing of K(ATP) channel genes showed missense variant in exon 3 (NC_000012) of the KCNJ8 gene, a subunit of the K(ATP) channel, conferring predisposition to dramatic repolarization changes and ventricular vulnerabilit

    Identification of a strong genetic background for progressive cardiac conduction defect by epidemiological approach

    Get PDF
    International audienceINTRODUCTION:Progressive cardiac conduction defect (PCCD) is a frequent disease attributed to degeneration and fibrosis of the His bundle. Over the past years, gene defects have been identified demonstrating that PCCD could be a genetic disease. The aim of this study was to show a familial aggregation for PCCD using a genetic epidemiological approach to improve in fine genetic knowledge of the transmission of the disease.METHODS AND RESULTS:Using the French social security number, the authors have been able to determine the city of birth of the 6667 patients implanted with a pacemaker (PM) for PCCD between 1995 and 2005 in the western part of France. The authors then mapped the frequency of PM implantations for PCCD. A large heterogeneity of the frequency of the disease has been observed, with a frequency of 0.21% in the major city (Nantes) ranging up to 2.28% in specific parishes. Familial studies performed in the parishes with the highest frequency of the disease allowed the authors to identify five large families with PCCD. Clinical investigations demonstrated phenotype heterogeneity between families. Three patterns have been differentiated.CONCLUSIONS:This study demonstrates a disparate geographical repartition of the frequency of PM implantation in the area of the authors at least in part related to a hereditary factor. The identification of five large families affected by PCCD using epidemiological approach underlines the existence of a major genetic background in PCCD

    Early repolarization disease

    No full text
    Sudden cardiac death (SCD) is defined as an unexpected natural death from a cardiac cause within a short time period, generally less than or equal to 1. hour from the onset of symptoms, in a person without any prior condition that seems to result in instantaneous fatality. Although such a rapid death process is attributed to cardiac arrhythmia, arrhythmia often represents the final common event in a series of events precipitated by known (95%) or unknown (5%) cardiac disorder. Electrocardiographic early repolarization involving the inferolateral leads, which was labeled benign until recently, is the latest of the primary electrical cardiac diseases discovered to have significantly high prevalence in SCD cases. Careful evaluation of patients having early repolarization associated with unexplained syncope, family history of SCD, or idiopathic ventricular arrhythmias is recommended. © 2010 Elsevier Inc

    Understanding the Pathophysiology of Intracranial Aneurysm: The ICAN Project

    No full text
    International audienceBACKGROUND: Understanding the pathophysiologic mechanism of intracranial aneurysm (IA) formation is a prerequisite to assess the potential risk of rupture. Nowadays, there are neither reliable biomarkers nor diagnostic tools to predict the formation or the evolution of IA. Increasing evidence suggests a genetic component of IA but genetics studies have failed to identify genetic variation causally related to IA.OBJECTIVE: To develop diagnostic and predictive tools for the risk of IA formation and rupture.METHODS: The French ICAN project is a noninterventional nationwide and multicentric research program. Each typical IA of bifurcation will be included. For familial forms, further IA screening will be applied among first-degree relatives. By accurate phenotype description with high-throughput genetic screening, we aim to identify new genes involved in IA. These potential genetic markers will be tested in large groups of patients. Any relevant pathway identified will be further explored in a large cohort of sporadic carriers of IA, which will be well documented with clinical, biological, and imaging data.EXPECTED OUTCOMES: Discovering genetic risk factors, better understanding the pathophysiology, and identifying molecular mechanisms responsible for IA formation will be essential bases for the development of biomarkers and identification of therapeutic targets.DISCUSSION: Our protocol has many assets. A nationwide recruitment allows for the inclusion of large pedigrees with familial forms of IA. It will combine accurate phenotyping and comprehensive imaging with high-throughput genetic screening. Last, it will enable exploiting metadata to explore new pathophysiological pathways of interest by crossing clinical, genetic, biological, and imaging information
    corecore