9 research outputs found

    Inhibition of hexokinase-2 with targeted liposomal 3-bromopyruvate in an ovarian tumor spheroid model of aerobic glycolysis

    No full text
    Background: The objective of this study was to evaluate the expression levels of glycolytic markers, especially hexokinase-2 (HK2), using a three-dimensional multicellular spheroid model of human ovarian adenocarcinoma (SKOV-3) cells and to develop an epidermal growth factor receptor-targeted liposomal formulation for improving inhibition of HK2 and the cytotoxicity of 3-bromopyruvate (3-BPA). Methods: Multicellular SKOV-3 tumor spheroids were developed using the hanging drop method and expression levels of glycolytic markers were examined. Non-targeted and epidermal growth factor receptor-targeted liposomal formulations of 3-BPA were formulated and characterized. Permeability and cellular uptake of the liposomal formulations in three-dimensional SKOV-3 spheroids was evaluated using confocal microscopy. The cytotoxicity and HK2 inhibition potential of solution form of 3-BPA was compared to the corresponding liposomal formulation by using cell proliferation and HK2 enzymatic assays. Results: SKOV-3 spheroids were reproducibly developed using the 96-well hanging drop method, with an average size of 900 μm by day 5. HK2 enzyme activity levels under hypoxic conditions were found to be higher than under normoxic conditions (

    Combination wt-p53 and MicroRNA-125b transfection in a genetically engineered lung cancer model using dual CD44/EGFR-targeting nanoparticles

    No full text
    Mutations in KRAS and p53 signaling pathways contribute to loss of responsiveness to current therapies and a decreased survival in lung cancer. In this study, we have investigated the delivery and transfection of wild-type (wt-) p53 and microRNA-125b (miR-125b) expressing plasmid DNA, in SK-LU-1 human lung adenocarcinoma cells as well as in Kras G12D /p53 fl/fl (KP) genetically engineered mouse model of lung cancer. Systemic plasmid DNA delivery with dual CD44/EGFR-targeted hyaluronic acid (HA)-based nanoparticles (NPs) resulted in a 2- to 20-fold increase in wt-p53 and miR-125b gene expression in SK-LU-1 cells. This resulted in enhanced apoptotic activity as seen with increased APAF-1 and caspase-3 gene expression. Similarly, in vivo evaluations in KP mouse model indicated successful CD44/EGFR-targeted delivery. Tumor growth inhibition and apoptotic induction were also observed with (wt-p53+miR125b) combination therapy in KP tumor model. Lastly, J774.A1 murine macrophages co-cultured with transfected SK-LU-1 cells showed a 14- to 35-fold increase in the iNOS-Arg-1 ratio, supportive of previous results demonstrating a role of miR-125b in macrophage repolarization. Overall, these results show tremendous promise of wt-p53 and miR-125b gene therapy using dual CD44/EGFR-targeting HA NP vector for effective treatment of lung cancer

    Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice

    No full text
    The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically, but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-β cells), which may represent an unlimited source of human cells for pancreas replacement therapy. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier. However, clinical implementation has been challenging because of host immune responses to the implant materials. Here we report the first long-term glycemic correction of a diabetic, immunocompetent animal model using human SC-β cells. SC-β cells were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin, which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.Leona M. and Harry B. Helmsley Charitable Trust (Grant 3-SRA-2014-285-M-R)National Institutes of Health (U.S.) (Grants EB000244, EB000351, DE013023, and CA151884)Tayebati Family FoundationUnited States. Dept. of Defense. Congressionally Directed Medical Research Programs (Grant W81XWH-13-1-0215)Juvenile Diabetes Research Foundation International (Grant 3-2013-178

    Technologies and Standardization in Research on Extracellular Vesicles

    No full text
    corecore