130 research outputs found

    How will smart city production systems transform supply chain design: a product-level investigation

    Get PDF
    © 2016 Informa UK Limited, trading as Taylor & Francis Group.This paper is a first step to understand the role that a smart city with a distributed production system could have in changing the nature and form of supply chain design. Since the end of the Second World War, most supply chain systems for manufactured products have been based on ‘scale economies’ and ‘bigness’; in our paper we challenge this traditional view. Our fundamental research question is: how could a smart city production system change supply chain design? In answering this question, we develop an integrative framework for understanding the interplay between smart city technological initiatives (big data analytics, the industrial Internet of things) and distributed manufacturing on supply chain design. This framework illustrates synergies between manufacturing and integrative technologies within the smart city context and links with supply chain design. Considering that smart cities are based on the collaboration between firms, end-users and local stakeholders, we advance the present knowledge on production systems through case-study findings at the product level. In the conclusion, we stress there is a need for future research to empirically develop our work further and measure (beyond the product level) the extent to which new production technologies such as distributed manufacturing are indeed democratising supply chain design and transforming manufacturing from ‘global production’ to a future ‘city-oriented’ social materiality

    Diet-induced iron deficiency in rats impacts small intestinal calcium and phosphate absorption

    Get PDF
    Aims: Recent reports suggest that iron deficiency impacts both intestinal calcium and phosphate absorption, although the exact transport pathways and intestinal segment responsible have not been determined. Therefore, we aimed to systematically investigate the impact of iron deficiency on the cellular mechanisms of transcellular and paracellular calcium and phosphate transport in different regions of the rat small intestine. // Methods: Adult, male Sprague-Dawley rats were maintained on a control or iron-deficient diet for 2 weeks and changes in intestinal calcium and phosphate uptake were determined using the in situ intestinal loop technique. The circulating levels of the hormonal regulators of calcium and phosphate were determined by ELISA, while the expression of transcellular calcium and phosphate transporters, and intestinal claudins were determined using qPCR and western blotting. Results: Diet-induced iron deficiency significantly increased calcium absorption in the duodenum but had no impact in the jejunum and ileum. In contrast, phosphate absorption was significantly inhibited in the duodenum and to a lesser extent the jejunum, but remained unchanged in the ileum. The changes in duodenal calcium and phosphate absorption in the iron-deficient animals were associated with increased claudin 2 and 3 mRNA and protein levels, while levels of parathyroid hormone, fibroblast growth factor-23 and 1,25-dihydroxy vitamin D3 were unchanged. // Conclusion: We propose that iron deficiency alters calcium and phosphate transport in the duodenum. This occurs via changes to the paracellular pathway, whereby upregulation of claudin 2 increases calcium absorption and upregulation of claudin 3 inhibits phosphate absorption

    Exploring Reconfigurability in Manufacturing through IIoT Connected MES/MOM

    Get PDF
    This paper explores the role of manufacturing execution systems (MES) with ISA 95 functionalities for the reconfigurability in a manufacturing enterprise. The work is aimed at supporting digitalization based on Industry 4.0 and the Industrial Internet of Things (IIoT) concepts. For this, we use the quality function deployment method to link ISA 95 MES functionalities and reconfigurability needs, based on a case example of a cyber-physical factory (AAU Smart Lab). Accordingly, we present a framework to assess reconfigurability for smart factory development. The paper identifies reconfigurability approaches using IIoT connected MES/MOM for tackling severe market disruptions (e.g. the one caused by the ongoing COVID-19 pandemic)

    The impact of product attributes and emerging technologies on firms’ international configuration

    Get PDF
    International business literature has largely explained the international dispersion of firms’ activities as a choice based on trade-offs between cost minimisation, knowledge seeking, managing transaction costs and maintaining control. By incorporating insights from operations management, we propose a framework that explicitly takes into account products’ physical and knowledge attributes that constrain the viable international configuration options available to firms. Linking the characteristics of a product to the scope for horizontal and vertical decoupling in a value network allows us to re-frame recent discussions in the literature about fragmentation of activities vs tasks and to develop an overall picture of the way industry-specific peculiarities characterise (and also constrain) viable international configurations. We show how our framework can be used to interpret data on the scope for decoupling and dispersion collected from industry experts and elucidate the relationships between configuration options and measures of product characteristics. We then utilise this framework to predict how emerging technologies will reshape the international configuration options available to firms.EPSR

    Diet‐induced iron deficiency in rats impacts small intestinal calcium and phosphate absorption

    Get PDF
    Aims: Recent reports suggest that iron deficiency impacts both intestinal calcium and phosphate absorption, although the exact transport pathways and intestinal segment responsible have not been determined. Therefore, we aimed to systematically investigate the impact of iron deficiency on the cellular mechanisms of transcellular and paracellular calcium and phosphate transport in different regions of the rat small intestine. Methods: Adult, male Sprague‐Dawley rats were maintained on a control or iron deficient diet for two weeks and changes in intestinal calcium and phosphate uptake were determined using the in situ intestinal loop technique. The circulating levels of the hormonal regulators of calcium and phosphate were determined by ELISA, while the expression of transcellular calcium and phosphate transporters, and intestinal claudins were determined using qPCR and western blotting. Results: Diet‐induced iron deficiency significantly increased calcium absorption in the duodenum but had no impact in the jejunum and ileum. In contrast, phosphate absorption was significantly inhibited in the duodenum and to a lesser extent the jejunum, but remained unchanged in the ileum. The changes in duodenal calcium and phosphate absorption in the iron deficient animals were associated with increased claudin 2 and 3 mRNA and protein levels, while levels of parathyroid hormone, fibroblast growth factor‐23 and 1,25‐dihydroxy vitamin D3 were unchanged. Conclusion: We propose that iron deficiency alters calcium and phosphate transport in the duodenum. This occurs via changes to the paracellular pathway, whereby upregulation of claudin 2 increases calcium absorption and upregulation of claudin 3 inhibits phosphate absorption

    Research priorities for managing the impacts and dependencies of business upon food, energy, water and the environment

    Get PDF
    Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.This work was supportedby the Economic and Social Research Council [Grant Number ES/L01632X/1] and is part of the Nexus Network Initiative. WJS is funded by Arcadia

    Publisher Correction: Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease)

    Get PDF
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-018-27107-8, published online 19 June 201

    Distributed manufacturing: scope, challenges and opportunities

    Get PDF
    This discussion paper aims to set out the key challenges and opportunities emerging from distributed manufacturing (DM). We begin by describing the concept, available definitions and consider its evolution where recent production technology developments (such as additive and continuous production process technologies), digitization together with infrastructural developments (in terms of IoT and big-data) provide new opportunities. To further explore the evolving nature of DM, the authors, each of whom are involved in specific applications of DM research, examine through an expert panel workshop environment emerging DM applications involving new production and supporting infrastructural technologies. This paper presents these generalizable findings on DM challenges and opportunities in terms of products, enabling production technologies, and the impact on the wider production and industrial system. Industry structure and location of activities are examined in terms of the democratizing impact on participating network actors. The paper concludes with a discussion on the changing nature of manufacturing as a result of DM, from the traditional centralized, large scale, long lead-time forecast driven production operations, to a new DM paradigm where manufacturing is a decentralized, autonomous near end-user driven activity. A forward research agenda is proposed that considers the impact of DM on the industrial and urban landscape.The Cambridge–Hamied Visiting Lecture Scheme and UKIERIThis is the author accepted manuscript. The final version is available from Taylor & Francis via https://doi.org/10.1080/00207543.2016.119230

    Enabling precision manufacturing of active pharmaceutical ingredients: workflow for seeded cooling continuous crystallisations

    Get PDF
    Continuous manufacturing is widely used for the production of commodity products. Currently, it is attracting increasing interest from the pharmaceutical industry and regulatory agencies as a means to provide a consistent supply of medicines. Crystallisation is a key operation in the isolation of the majority of pharmaceuticals and has been demonstrated in a continuous manner on a number of compounds using a range of processing technologies and scales. Whilst basic design principles for crystallisations and continuous processes are known, applying these in the context of rapid pharmaceutical process development with the associated constraints of speed to market and limited material availability is challenging. A systematic approach for continuous crystallisation process design is required to avoid the risk that decisions made on one aspect of the process conspire to make a later development step or steps, either for crystallisation or another unit operation, more difficult. In response to this industry challenge, an innovative system-wide approach to decision making has been developed to support rapid, systematic, and efficient continuous seeded cooling crystallisation process design. For continuous crystallisation, the goal is to develop and operate a robust, consistent process with tight control of particle attributes. Here, an innovative system-based workflow is presented that addresses this challenge. The aim, methodology, key decisions and output at each at stage are defined and a case study is presented demonstrating the successful application of the workflow for the rapid design of processes to produce kilo quantities of product with distinct, specified attributes suited to the pharmaceutical development environment. This work concludes with a vision for future applications of workflows in continuous manufacturing development to achieve rapid performance based design of pharmaceuticals
    corecore