160 research outputs found
Essential Speech and Language Technology for Dutch: Results by the STEVIN-programme
Computational Linguistics; Germanic Languages; Artificial Intelligence (incl. Robotics); Computing Methodologie
Cornetto: A Combinatorial Lexical Semantic Database for Dutch
One of the goals of the STEVIN programme is the realisation of a digital infrastructure that will enforce the position of the Dutch language in the modern information and communication technology.A semantic database makes it possible to go from words to concepts and consequently, to develop technologies that access and use knowledge rather than textual representations
Viewpoints on emergent semantics
Authors include:Philippe Cudr´e-Mauroux, and Karl Aberer (editors),
Alia I. Abdelmoty, Tiziana Catarci, Ernesto Damiani,
Arantxa Illaramendi, Robert Meersman,
Erich J. Neuhold, Christine Parent, Kai-Uwe Sattler,
Monica Scannapieco, Stefano Spaccapietra,
Peter Spyns, and Guy De Tr´eWe introduce a novel view on how to deal with the problems of semantic interoperability in distributed systems. This view is based on the concept of emergent semantics, which sees both the representation of semantics and the discovery of the proper interpretation of symbols as the result of a self-organizing process performed by distributed agents exchanging symbols and having utilities dependent on the proper interpretation of the symbols. This is a complex systems perspective on the problem of dealing with semantics. We highlight some of the distinctive features of our vision and point out preliminary examples of its applicatio
Comparing the hierarchy of keywords in on-line news portals
The tagging of on-line content with informative keywords is a widespread
phenomenon from scientific article repositories through blogs to on-line news
portals. In most of the cases, the tags on a given item are free words chosen
by the authors independently. Therefore, relations among keywords in a
collection of news items is unknown. However, in most cases the topics and
concepts described by these keywords are forming a latent hierarchy, with the
more general topics and categories at the top, and more specialised ones at the
bottom. Here we apply a recent, cooccurrence-based tag hierarchy extraction
method to sets of keywords obtained from four different on-line news portals.
The resulting hierarchies show substantial differences not just in the topics
rendered as important (being at the top of the hierarchy) or of less interest
(categorised low in the hierarchy), but also in the underlying network
structure. This reveals discrepancies between the plausible keyword association
frameworks in the studied news portals
Desing and Validation of a Light Inference System to Support Embedded Context Reasoning
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
Modelo para la evaluación de ontologías. Aplicación en Onto-Satcol
This paper analyzes the conceptual and theoretical framework for the evaluation of ontologies, in order to understand the procedures used in the evaluation of these systems and to establish new guidelines for evaluating the system employed by the ontological program, SATCOL, that specializes in Port and Coastal Engineering. This paper describes the characteristics of the Onto-SATCOL ontology and evaluates it by using several indicators (lexical, information retrieval, and syntactic structure). Through an experiment conducted by six experts aided by the tool, Protex, semantic and structural inconsistencies are identified, as are errors in the ontology’s organization of knowledge.<br><br>Se analizan los referentes teóricos y conceptuales de la evaluación de ontologías para conocer los procedimientos utilizados en la evaluación de estos sistemas y establecer nuevas pautas para calibrar el sistema ontológico empleado por el programa Satcol, especializado en Ingeniería de Puertos y Costas. En el trabajo se describen las características de la ontología Onto-Satcol y se evalúa la misma mediante el uso de varios indicadores (léxicos, de recuperación de información y de la estructura sintáctica). Mediante un experimento llevado a cabo por 6 expertos, y con la ayuda de la herramienta Protex, se identifican inconsistencias semánticas, estructurales y errores en la organización del conocimiento de dicha ontología
A review of automatic phenotyping approaches using electronic health records
Electronic Health Records (EHR) are a rich repository of valuable clinical information that exist in primary and secondary care databases. In order to utilize EHRs for medical observational research a range of algorithms for automatically identifying individuals with a specific phenotype have been developed. This review summarizes and offers a critical evaluation of the literature relating to studies conducted into the development of EHR phenotyping systems. This review describes phenotyping systems and techniques based on structured and unstructured EHR data. Articles published on PubMed and Google scholar between 2013 and 2017 have been reviewed, using search terms derived from Medical Subject Headings (MeSH). The popularity of using Natural Language Processing (NLP) techniques in extracting features from narrative text has increased. This increased attention is due to the availability of open source NLP algorithms, combined with accuracy improvement. In this review, Concept extraction is the most popular NLP technique since it has been used by more than 50% of the reviewed papers to extract features from EHR. High-throughput phenotyping systems using unsupervised machine learning techniques have gained more popularity due to their ability to efficiently and automatically extract a phenotype with minimal human effort
Automation of a problem list using natural language processing
BACKGROUND: The medical problem list is an important part of the electronic medical record in development in our institution. To serve the functions it is designed for, the problem list has to be as accurate and timely as possible. However, the current problem list is usually incomplete and inaccurate, and is often totally unused. To alleviate this issue, we are building an environment where the problem list can be easily and effectively maintained. METHODS: For this project, 80 medical problems were selected for their frequency of use in our future clinical field of evaluation (cardiovascular). We have developed an Automated Problem List system composed of two main components: a background and a foreground application. The background application uses Natural Language Processing (NLP) to harvest potential problem list entries from the list of 80 targeted problems detected in the multiple free-text electronic documents available in our electronic medical record. These proposed medical problems drive the foreground application designed for management of the problem list. Within this application, the extracted problems are proposed to the physicians for addition to the official problem list. RESULTS: The set of 80 targeted medical problems selected for this project covered about 5% of all possible diagnoses coded in ICD-9-CM in our study population (cardiovascular adult inpatients), but about 64% of all instances of these coded diagnoses. The system contains algorithms to detect first document sections, then sentences within these sections, and finally potential problems within the sentences. The initial evaluation of the section and sentence detection algorithms demonstrated a sensitivity and positive predictive value of 100% when detecting sections, and a sensitivity of 89% and a positive predictive value of 94% when detecting sentences. CONCLUSION: The global aim of our project is to automate the process of creating and maintaining a problem list for hospitalized patients and thereby help to guarantee the timeliness, accuracy and completeness of this information
- …