259 research outputs found

    Dichloro-[1-(hydroxyphenyl)-2-phenylethylenediamine]platinum(II) complexes: testing on the human ovarian cancer cell lines NIH: OVCAR3 and SK OV 3

    Get PDF
    The diastereoisomeric dichloro-[1-(2-, 3- and 4-hydroxyphenyl)-2-phenylethylenediamine]platinum(II) complexes were tested on two human ovarian cancer cell lines NIH: OVCAR-3 and SK-OV-3, both resistant against cisplatin. Dichloro-[threo-1-(3-hydroxyphenyl)-2-phenylethylenediamine]platinum(II) (threo-5-PtCl2) proved to be the most active representative of the new series, producing cytocidal effects at a concentration range of 2.5 to 5.0 microM on the NIH: OVCAR-3 cell line. On the more resistant SK-OV-3 cell line, threo-5-PtCl2 was only moderately active, while in combination with BSO, a GSH level lowering compound, threo-5-PtCl2 showed a strong synergistic effect

    Serotonin receptor type 3 antagonists improve obesity-associated fatty liver disease in mice

    Get PDF
    ABSTRACT Obesity is a major cause for nonalcoholic fatty liver disease (NAFLD). Previous studies suggested that alterations in intestinal motility and permeability contribute to the development of NAFLD. Serotonin and serotonin receptor type 3 (5-HT 3 R) are key factors in the regulation of intestinal motility and permeability. Therefore, we studied the effect of the 5-HT 3 R antagonists tropisetron and palonosetron on the development of NA-FLD in leptin-deficient obese mice. Four-week-old ob/ob mice and lean controls were treated for 6 weeks orally with tropisetron or palonosetron at 0.2 mg/kg per day. We determined markers of liver damage and inflammation, portal endotoxin levels, and duodenal concentrations of serotonin, serotoninreuptake transporter (SERT), occludin, and claudin-1. Tropisetron treatment significantly reduced liver fat content (Ϫ29%), liver inflammation (Ϫ56%), and liver cell necrosis (Ϫ59%) in ob/ob mice. The beneficial effects of tropisetron were accompanied by a decrease in plasma alanine aminotransferase and portal vein plasma endotoxin levels, an attenuation of enhanced MyD88 and tumor necrosis factor-␣ mRNA expression in the liver, and an increase of tight junction proteins in the duodenum. Tropisetron treatment also caused a reduction of elevated serotonin levels and an increase of SERT in the duodenum of ob/ob mice. Palonosetron had similar effects as tropisetron with regard to the reduction of liver fat and other parameters. Tropisetron and palonosetron are effective in attenuating NAFLD in a genetic mouse model of obesity. The effect involves the intestinal nervous system, resulting in a reduction of endotoxin influx into the liver and subsequently of liver inflammation and fat accumulation

    Biocompatibility and erosion behavior of implants made of triglycerides and blends with cholesterol and phospholipids

    Get PDF
    Abstract Triglycerides are a promising class of material for the parenteral delivery of drugs and have become the focus of tremendous research efforts in recent years. The aim of this study was to investigate the biocompatibility of glyceroltripalmitate as well as the influence of cholesterol and distearoyl-phosphatidyl-choline (DSPC) on the erosion behavior of the lipid. For these investigations, two in vivo studies were carried out, in which cylindrical matrices of 2 mm diameter were manufactured and subcutaneously implanted in immunocompetent NMRI-mice. After excision of the implants, tissue reactions of the animals as well as changes in the weight, shape and microstructure of the implants were investigated. The triglyceride and cholesterol showed good biocompatibility, as indicated by their minimal encapsulation in connective tissue and the absence of inflammatory reactions. Increasing the levels of phospholipid in the implants, however, led to an increased inflammatory reaction. In contrast to cholesterol, which did not affect erosion, the incorporation of DSPC into the triglyceride matrices led to clearly visible signs of degradation

    Development of a Neurotensin-Derived 68Ga-Labeled PET Ligand with High In Vivo Stability for Imaging of NTS1 Receptor-Expressing Tumors

    Get PDF
    Overexpression of the neurotensin receptor type 1 (NTS1R), a peptide receptor located at the plasma membrane, has been reported for a variety of malignant tumors. Thus, targeting the NTS1R with 18F- or 68Ga-labeled ligands is considered a straightforward approach towards in vivo imaging of NTS1R-expressing tumors via positron emission tomography (PET). The development of suitable peptidic NTS1R PET ligands derived from neurotensin is challenging due to proteolytic degradation. In this study, we prepared a series of NTS1R PET ligands based on the C-terminal fragment of neurotensin (NT(8–13), Arg8-Arg9-Pro10-Tyr11-Ile12-Leu13) by attachment of the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) via an Nω-carbamoylated arginine side chain. Insertion of Ga3+ in the DOTA chelator gave potential PET ligands that were evaluated concerning NTS1R affinity (range of Ki values: 1.2–21 nM) and plasma stability. Four candidates were labeled with 68Ga3+ and used for biodistribution studies in HT-29 tumor-bearing mice. [68Ga]UR-LS130 ([68Ga]56), containing an N-terminal methyl group and a β,β-dimethylated tyrosine instead of Tyr11, showed the highest in vivo stability and afforded a tumor-to-muscle ratio of 16 at 45 min p.i. Likewise, dynamic PET scans enabled a clear tumor visualization. The accumulation of [68Ga]56 in the tumor was NTS1R-mediated, as proven by blocking studies

    Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma

    Get PDF
    High malignancy and early metastasis are hallmarks of melanoma. Here, we report that the transcription factor Snail1 inhibits expression of the tumor suppressor CYLD in melanoma. As a direct consequence of CYLD repression, the protooncogene BCL-3 translocates into the nucleus and activates Cyclin D1 and N-cadherin promoters, resulting in proliferation and invasion of melanoma cells. Rescue of CYLD expression in melanoma cells reduced proliferation and invasion in vitro and tumor growth and metastasis in vivo. Analysis of a tissue microarray with primary melanomas from patients revealed an inverse correlation of Snail1 induction and loss of CYLD expression. Importantly, tumor thickness and progression-free and overall survival inversely correlated with CYLD expression. Our data suggest that Snail1-mediated suppression of CYLD plays a key role in melanoma malignancy

    Emodin Prevents Intrahepatic Fat Accumulation, Inflammation and Redox Status Imbalance During Diet-Induced Hepatosteatosis in Rats

    Get PDF
    High-fat and/or high-carbohydrate diets may predispose to several metabolic disturbances including liver fatty infiltration (hepatosteatosis) or be associated with necro-inflammation and fibrosis (steatohepatitis). Several studies have emphasized the hepatoprotective effect of some natural agents. In this study, we investigated the potential therapeutic effects of the treatment with emodin, an anthraquinone derivative with anti-oxidant and anti-cancer abilities, in rats developing diet-induced hepatosteatosis and steatohepatitis. Sprague-Dawley rats were fed a standard diet (SD) for 15 weeks, or a high-fat/high-fructose diet (HFD/HF). After 5 weeks, emodin was added to the drinking water of some of the SD and HFD/HF rats. The experiment ended after an additional 10 weeks. Emodin-treated HFD/HF rats were protected from hepatosteatosis and metabolic derangements usually observed in HFD/HF animals. Furthermore, emodin exerted anti-inflammatory activity by inhibiting the HFD/HF-induced increase of tumor necrosis factor (TNF)-α. Emodin also affected the hepatocytes glutathione homeostasis and levels of the HFD/HF-induced increase of glutathionylated/phosphorylated phosphatase and tensin homolog (PTEN). In conclusion, we demonstrated that a natural agent such as emodin can prevent hepatosteatosis, preserving liver from pro-inflammatory and pro-oxidant damage caused by HFD/HF diet. These findings are promising, proposing emodin as a possible hindrance to progression of hepatosteatosis into steatohepatitis

    Targeting Melanoma Metastasis and Immunosuppression with a New Mode of Melanoma Inhibitory Activity (MIA) Protein Inhibition

    Get PDF
    Melanoma is the most aggressive form of skin cancer, with fast progression and early dissemination mediated by the melanoma inhibitory activity (MIA) protein. Here, we discovered that dimerization of MIA is required for functional activity through mutagenesis of MIA which showed the correlation between dimerization and functional activity. We subsequently identified the dodecapeptide AR71, which prevents MIA dimerization and thereby acts as a MIA inhibitor. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy demonstrated the binding of AR71 to the MIA dimerization domain, in agreement with in vitro and in vivo data revealing reduced cell migration, reduced formation of metastases and increased immune response after AR71 treatment. We believe AR71 is a lead structure for MIA inhibitors. More generally, inhibiting MIA dimerization is a novel therapeutic concept in melanoma therapy
    corecore