155 research outputs found

    Density functional theory and DFT+U study of transition metal porphines adsorbed on Au(111) surfaces and effects of applied electric fields

    Full text link
    We apply Density Functional Theory (DFT) and the DFT+U technique to study the adsorption of transition metal porphine molecules on atomistically flat Au(111) surfaces. DFT calculations using the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional correctly predict the palladium porphine (PdP) low-spin ground state. PdP is found to adsorb preferentially on gold in a flat geometry, not in an edgewise geometry, in qualitative agreement with experiments on substituted porphyrins. It exhibits no covalent bonding to Au(111), and the binding energy is a small fraction of an eV. The DFT+U technique, parameterized to B3LYP predicted spin state ordering of the Mn d-electrons, is found to be crucial for reproducing the correct magnetic moment and geometry of the isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111) substantially alters the Mn ion spin state. Its interaction with the gold substrate is stronger and more site-specific than PdP. The binding can be partially reversed by applying an electric potential, which leads to significant changes in the electronic and magnetic properties of adsorbed MnP, and ~ 0.1 Angstrom, changes in the Mn-nitrogen distances within the porphine macrocycle. We conjecture that this DFT+U approach may be a useful general method for modeling first row transition metal ion complexes in a condensed-matter setting.Comment: 14 pages, 6 figure

    The role of extracellular vesicles in the removal of aggregated TDP43 responsible for ALS/FTD diseases

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two related neurodegenerative diseases. ALS is caused by the death of both upper and lower motoneurons, while FTD is characterized predominantly by circumscribed atrophy of the frontal and temporal lobes. ALS and FTD overlap each other. This is demonstrated by the presence of cognitive and behavioral dysfunction in up to 50% of ALS patients and by the presence of frontotemporal atrophy in patients with ALS. Moreover, these diseases are both characterize by the presence of TAR DNA binding protein 43 (TDP43) inclusions in affected cells. These inclusions, observed in 97% of patients with ALS and 50% of patients with FTD, are composed by TDP43 and its C-terminal fragments of 35 kDa (TDP35) and 25 kDa (TDP25). These fragments are highly aggregation-prone and probably neurotoxic. Thus, their removal is protective for cells. The mechanism responsible for the clearance of aggregates and misfolded proteins is the intracellular protein quality control (PQC) system. It consists of molecular chaperones/co- chaperones and the degradative pathways. PQC controls the folding status of proteins and prevents the aggregation of misfolded proteins by refolding them or degrading. Recent data demonstrated that also extracellular secretory pathway, represented especially by exosomes (EXOs) and microvesicles (MVs), might be involved in the removal of misfolded proteins from affected cells. Thus, we evaluated the role of EXOs and MVs in the secretion of TDP43 and its C-terminal fragments, using neuronal cell models. We used ultracentrifugation, that allowed us to separate MVs from EXOs on the basis of their dimension. Then we analyzed them through i) Nanoparticle Tracking Analysis (NanoSight) to establish their number and sizes, and ii) western blot analysis, to characterize their protein content. Our preliminary results show that TDP43, TDP35 and TDP25 are all secreted, mainly by MVs. In particular, we found that MVs are enriched of insoluble forms of TDPs and also of superoxide dismutase 1 (SOD1), another ALS-related protein. Finally, both in EXOs and in MVs, we observed the presence of some important PQC-components, suggesting an interplay between the two pathways. GRANTS: Fondazione Cariplo, Italy (n. 2017_0747); Universit\ue0 degli Studi di Milano e piano di sviluppo UNIMI - linea B

    ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients

    Get PDF
    Amyotrophic lateral sclerosis (ALS, MND) is a neurodegenerative disease of upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two years of first symptoms. Genetic factors are an important cause of ALS, with variants in more than 25 genes having strong evidence, and weaker evidence available for variants in more than 120 genes. With the increasing availability of next-generation sequencing data, non-specialists, including health care professionals and patients, are obtaining their genomic information without a corresponding ability to analyze and interpret it. Furthermore, the relevance of novel or existing variants in ALS genes is not always apparent. Here we present ALSgeneScanner, a tool that is easy to install and use, able to provide an automatic, detailed, annotated report, on a list of ALS genes from whole-genome sequencing (WGS) data in a few hours and whole exome sequence data in about 1 h on a readily available mid-range computer. This will be of value to non-specialists and aid in the interpretation of the relevance of novel and existing variants identified in DNA sequencing data

    ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients

    Get PDF
    Amyotrophic lateral sclerosis (ALS, MND) is a neurodegenerative disease of upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two years of first symptoms. Genetic factors are an important cause of ALS, with variants in more than 25 genes having strong evidence, and weaker evidence available for variants in more than 120 genes. With the increasing availability of next-generation sequencing data, non-specialists, including health care professionals and patients, are obtaining their genomic information without a corresponding ability to analyze and interpret it. Furthermore, the relevance of novel or existing variants in ALS genes is not always apparent. Here we present ALSgeneScanner, a tool that is easy to install and use, able to provide an automatic, detailed, annotated report, on a list of ALS genes from whole-genome sequencing (WGS) data in a few hours and whole exome sequence data in about 1 h on a readily available mid-range computer. This will be of value to non-specialists and aid in the interpretation of the relevance of novel and existing variants identified in DNA sequencing data

    A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK.

    Get PDF
    Amyotrophic lateral sclerosis is a progressive neurodegenerative disease of motor neurons. About 25 genes have been verified as relevant to the disease process, with rare and common variation implicated. We used next generation sequencing and repeat sizing to comprehensively assay genetic variation in a panel of known amyotrophic lateral sclerosis genes in 1126 patient samples and 613 controls. About 10% of patients were predicted to carry a pathological expansion of the C9orf72 gene. We found an increased burden of rare variants in patients within the untranslated regions of known disease-causing genes, driven by SOD1, TARDBP, FUS, VCP, OPTN and UBQLN2. We found 11 patients (1%) carried more than one pathogenic variant (P = 0.001) consistent with an oligogenic basis of amyotrophic lateral sclerosis. These findings show that the genetic architecture of amyotrophic lateral sclerosis is complex and that variation in the regulatory regions of associated genes may be important in disease pathogenesis

    C9orf72 intermediate expansions of 24–30 repeats are associated with ALS

    Get PDF
    The expansion of a hexanucleotide repeat GGGGCC in C9orf72 is the most common known cause of ALS accounting for ~ 40% familial cases and ~ 7% sporadic cases in the European population. In most people, the repeat length is 2, but in people with ALS, hundreds to thousands of repeats may be observed. A small proportion of people have an intermediate expansion, of the order of 20 to 30 repeats in size, and it remains unknown whether intermediate expansions confer risk of ALS in the same way that massive expansions do. We investigated the association of this intermediate repeat with ALS by performing a meta-analysis of four previously published studies and a new British/Alzheimer’s Disease Neuroimaging Initiative dataset of 1295 cases and 613 controls. The final dataset comprised 5071 cases and 3747 controls. Our meta-analysis showed association between ALS and intermediate C9orf72 repeats of 24 to 30 repeats in size (random-effects model OR = 4.2, 95% CI = 1.23–14.35, p-value = 0.02). Furthermore, we showed a different frequency of the repeat between the northern and southern European populations (Fisher’s exact test p-value = 5 × 10− 3). Our findings provide evidence for the association between intermediate repeats and ALS (p-value = 2 × 10− 4) with direct relevance for research and clinical practice by showing that an expansion of 24 or more repeats should be considered pathogenic

    Detection of long repeat expansions from PCR-free whole-genome sequence data

    Get PDF
    Identifying large expansions of short tandem repeats (STRs) such as those that cause amyotrophic lateral sclerosis (ALS) and fragile X syndrome is challenging for short-read whole-genome sequencing (WGS) data. A solution to this problem is an important step towards integrating WGS into precision medicine. We have developed a software tool called ExpansionHunter that, using PCR-free WGS short-read data, can genotype repeats at the locus of interest, even if the expanded repeat is larger than the read length. We applied our algorithm to WGS data from 3,001 ALS patients who have been tested for the presence of the C9orf72 repeat expansion with repeat-primed PCR (RP-PCR). Compared against this truth data, ExpansionHunter correctly classified all (212/212, 95% CI [0.98, 1.00]) of the expanded samples as either expansions (208) or potential expansions (4). Additionally, 99.9% (2,786/2,789, 95% CI [0.997, 1.00]) of the wild type samples were correctly classified as wild type by this method with the remaining three samples identified as possible expansions. We further applied our algorithm to a set of 152 samples where every sample had one of eight different pathogenic repeat expansions including those associated with fragile X syndrome, Friedreich's ataxia and Huntington's disease and correctly flagged all but one of the known repeat expansions. Thus, ExpansionHunter can be used to accurately detect known pathogenic repeat expansions and provides researchers with a tool that can be used to identify new pathogenic repeat expansions. The software is licensed under GPL v3.0 and the source code is freely available on GitHub

    Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials

    Get PDF
    OBJECTIVE: To assess whether genetic subgroups in recent amyotrophic lateral sclerosis (ALS) trials responded to treatment with lithium carbonate, but that the treatment effect was lost in a large cohort of nonresponders. METHODS: Individual participant data were obtained from 3 randomized trials investigating the efficacy of lithium carbonate. We matched clinical data with data regarding the UNC13A and C9orf72 genotype. Our primary outcome was survival at 12 months. On an exploratory basis, we assessed whether the effect of lithium depended on the genotype. RESULTS: Clinical data were available for 518 of the 606 participants. Overall, treatment with lithium carbonate did not improve 12-month survival (hazard ratio [HR] 1.0, 95% confidence interval [CI] 0.7-1.4; p = 0.96). Both the UNC13A and C9orf72 genotype were independent predictors of survival (HR 2.4, 95% CI 1.3-4.3; p = 0.006 and HR 2.5, 95% CI 1.1-5.2; p = 0.032, respectively). The effect of lithium was different for UNC13A carriers (p = 0.027), but not for C9orf72 carriers (p = 0.22). The 12-month survival probability for UNC13A carriers treated with lithium carbonate improved from 40.1% (95% CI 23.2-69.1) to 69.7% (95% CI 50.4-96.3). CONCLUSIONS: This study incorporated genetic data into past ALS trials to determine treatment effects in a genetic post hoc analysis. Our results suggest that we should reorient our strategies toward finding treatments for ALS, start focusing on genotype-targeted treatments, and standardize genotyping in order to optimize randomization and analysis for future clinical trials

    NEK1 variants confer susceptibility to amyotrophic lateral sclerosis

    Get PDF
    To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology

    Opioid use, post-operative complications, and implant survival after unicompartmental versus total knee replacement: a population-based network study

    Get PDF
    Background There is uncertainty around whether to use unicompartmental knee replacement (UKR) or total knee replacement (TKR) for individuals with osteoarthritis confined to a single compartment of the knee. We aimed to emulate the design of the Total or Partial Knee Arthroplasty Trial (TOPKAT) using routinely collected data to assess whether the efficacy results reported in the trial translate into effectiveness in routine practice, and to assess comparative safety. Methods We did a population-based network study using data from four US and one UK health-care database, part of the Observational Health Data Sciences and Informatics network. The inclusion criteria were the same as those for TOPKAT; briefly, we identified patients aged at least 40 years with osteoarthritis who had undergone UKR or TKR and who had available data for at least one year prior to surgery. Patients were excluded if they had evidence of previous knee arthroplasty, knee fracture, knee surgery (except diagnostic), rheumatoid arthritis, infammatory arthropathies, or septic arthritis. Opioid use from 91–365 days after surgery, as a proxy for persistent pain, was assessed for all participants in all databases. Postoperative complications (ie, venous thromboembolism, infection, readmission, and mortality) were assessed over the 60 days after surgery and implant survival (as measured by revision procedures) was assessed over the 5 years after surgery. Outcomes were assessed in all databases, except for readmission, which was assessed in three of the databases, and mortality, which was assessed in two of the databases. Propensity score matched Cox proportional hazards models were fitted for each outcome. Calibrated hazard ratios (cHRs) were generated for each database to account for observed differences in control outcomes, and cHRs were then combined using meta-analysis. Findings 33 867 individuals who received UKR and 557 831 individuals who received TKR between Jan 1, 2005, and April 30, 2018, were eligible for matching. 32 379 with UKR and 250 377 with TKR were propensity score matched and informed the analyses. UKR was associated with a reduced risk of postoperative opioid use (cHR from meta-analysis 0·81, 95% CI 0·73–0·90) and a reduced risk of venous thromboembolism (0·62, 0·36–0·95), whereas no difference was seen for infection (0·85, 0·51–1·37) and readmission (0·79, 0·47–1·25). Evidence was insufficient to conclude whether there was a reduction in risk of mortality. UKR was also associated with an increased risk of revision (1·64, 1·40–1·94). Interpretation UKR was associated with a reduced risk of postoperative opioid use compared with TKR, which might indicate a reduced risk of persistent pain after surgery. UKR was associated with a lower risk of venous thromboembolism but an increased risk of revision compared with TKR. These findings can help to inform shared decision making for individuals eligible for knee replacement surgery. Funding EU/European Federation of Pharmaceutical Industries and Associations Innovative Medicines Initiative (2) Joint Undertaking (EHDEN)
    • …
    corecore