We apply Density Functional Theory (DFT) and the DFT+U technique to study the
adsorption of transition metal porphine molecules on atomistically flat Au(111)
surfaces. DFT calculations using the Perdew-Burke-Ernzerhof (PBE) exchange
correlation functional correctly predict the palladium porphine (PdP) low-spin
ground state. PdP is found to adsorb preferentially on gold in a flat geometry,
not in an edgewise geometry, in qualitative agreement with experiments on
substituted porphyrins. It exhibits no covalent bonding to Au(111), and the
binding energy is a small fraction of an eV. The DFT+U technique, parameterized
to B3LYP predicted spin state ordering of the Mn d-electrons, is found to be
crucial for reproducing the correct magnetic moment and geometry of the
isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111)
substantially alters the Mn ion spin state. Its interaction with the gold
substrate is stronger and more site-specific than PdP. The binding can be
partially reversed by applying an electric potential, which leads to
significant changes in the electronic and magnetic properties of adsorbed MnP,
and ~ 0.1 Angstrom, changes in the Mn-nitrogen distances within the porphine
macrocycle. We conjecture that this DFT+U approach may be a useful general
method for modeling first row transition metal ion complexes in a
condensed-matter setting.Comment: 14 pages, 6 figure