61 research outputs found

    Osmium uptake, distribution, and 187Os/188Os and 187Re/188Os compositions in Phaeophyceae macroalgae, Fucus vesiculosus: Implications for determining the 187Os/188Os composition of seawater

    Get PDF
    The osmium isotopic composition (187Os/188Os) of seawater reflects the balance of input from mantle-, continental- and anthropogenic-derived sources. This study utilizes the Phaeophyceae, Fucus vesiculosus, to analyse its Os abundance and uptake, as well as to assess if macroalgae records the Os isotope composition of the seawater in which it lives. The data demonstrates that Os is not located in one specific biological structure within macroalgae, but is found throughout the organism. Osmium uptake was measured by culturing F. vesiculosus non-fertile tips with different concentrations of Os with a known 187Os/188Os composition (∼0.16), which is significantly different from the background isotopic composition of local seawater (∼0.94). The Os abundance of cultured non-fertile tips show a positive correlation to the concentration of the Os doped seawater. Moreover, the 187Os/188Os composition of the seaweed equaled that of the culture medium, stongly confirming the possible use of macroalgae as a biological proxy for the Os isotopic composition of the seawater

    Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations

    Get PDF
    The Ordovician (∼487 to 443 Ma) ended with the formation of extensive Southern Hemisphere ice sheets, known as the Hirnantian glaciation, and the second largest mass extinction in Earth History. It was followed by the Silurian (∼443 to 419 Ma), one of the most climatically unstable periods of the Phanerozoic as evidenced by several large scale (> 5‰) carbon isotope (δ13C) perturbations associated with further extinction events. Despite several decades of research, the cause of these environmental instabilities remains enigmatic. Here, we provide osmium (187Os/188Os) and lithium (δ7Li) isotope measurements of marine sedimentary rocks that cover four Silurian δ13C excursions. Osmium and Li isotope records resemble those previously recorded for the Hirnantian glaciation suggesting a similar causal mechanism. When combined with a new dynamic carbon-osmium-lithium biogeochemical model we suggest that astronomical forcing of the marine organic carbon cycle, as opposed to a decline in volcanic arc degassing or the rise of early land plants, resulted in drawdown of atmospheric CO2, triggering continental scale glaciation, intense global cooling and eustatic sea-level lows recognised in the geological record. Lower atmospheric pCO2 and temperatures during the Hirnantian and Silurian glaciations suppressed CO2 removal by silicate weathering, driving 187Os/188Os and δ7Li variability, supporting the existence of climate-regulating feedbacks

    Osmium isotopic constraints on sulphide formation in the epithermal environment of magmatic-hydrothermal mineral deposits

    Get PDF
    In the magmatic-hydrothermal environment, fluids with similar metal concentrations and sources may yield contrasting mineral assemblages in successive stages of sulphide mineralization. These differences are linked to the physico-chemical conditions of the mineralizing fluids (e.g., T, pH, fS2, fO2) acquired during their interaction with country rocks and/or by mixing with groundwater. Here, we integrate petrography and osmium (Os) isotope (187Os/188Os) sulphide geochemistry, and discuss novel constraints on magmatic fluid-rock interaction and magmatic fluid-groundwater mixing that are deemed to govern sulphide deposition in magmatic-hydrothermal systems. We studied pyrite (FeS2) and enargite (Cu3AsS4) from the porphyry-related polymetallic Cerro de Pasco (14.54–14.41 Ma) and Colquijirca (10.83–10.56 Ma) epithermal deposits in the Central Andes, Peru. Sulphide mineralization is genetically associated with Miocene magmatism and includes breccia and replacement bodies of carbonate country rocks, and veins cutting the magmatic and sedimentary country rocks. At both deposits, pyrite is followed by enargite in the paragenesis. Pyrite has a radiogenic initial 187Os/188Os isotopic composition (187Os/188Osi-pyrite or Osi-pyrite = 0.80 to 1.45). Enargite (I) enclosing pyrite or filling in cracks in pyrite also has a radiogenic initial 187Os/188Os isotopic composition (Osi-enargite I = 0.56 to 1.24). Conversely, enargite (II) that formed on irregular surfaces on earlier pyrite has an unradiogenic 187Os/188Os isotopic composition (Osi-enargite II = 0.13 to 0.17). Our data show that the paragenetic evolution from pyrite to enargite records a sharp change in the osmium isotope composition within these sulphides. Pyrite and enargite (I) record radiogenic initial 187Os/188Os isotopic compositions, indicating interaction of magmatic hydrothermal fluids with the sedimentary country rocks. However, the unradiogenic initial 187Os/188Os isotopic composition of enargite (II) suggests that magmatic fluids with a mantle-like 187Os/188Os signature ascended from parental magmatic chambers to the epithermal environment without incorporation of crustal Os via fluid-rock interaction or mixing with groundwater. This difference may be due to the country rocks being altered during previous stages, with the radiogenic crustal Os signature being flushed by earlier magmatic pulses. Our findings imply that ore metals (i.e., Cu, Au) are magma-derived, whereas the Os isotopic composition of pyrite and some enargite in epithermal deposits may capture the signature of the interaction of magmatic fluids with country rock lithologies (e.g., the Eifelian black shale in the study area) and/or groundwater. Thus, the isotopic composition of the siderophile and chalcophile trace element Os in sulphides may act as a tracer of metal source, and degree of wall-rock interaction

    Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations

    Get PDF
    The Ordovician (∼487 to 443 Ma) ended with the formation of extensive Southern Hemisphere ice sheets, known as the Hirnantian glaciation, and the second largest mass extinction in Earth History. It was followed by the Silurian (∼443 to 419 Ma), one of the most climatically unstable periods of the Phanerozoic as evidenced by several large scale (>5‰) carbon isotope (δ13C) perturbations associated with further extinction events. Despite several decades of research, the cause of these environmental instabilities remains enigmatic. Here, we provide osmium (187Os/188Os) and lithium (δ7Li) isotope measurements of marine sedimentary rocks that cover four Silurian δ13C excursions. Osmium and Li isotope records resemble those previously recorded for the Hirnantian glaciation suggesting a similar causal mechanism. When combined with a new dynamic carbon-osmium-lithium biogeochemical model we suggest that astronomical forcing of the marine organic carbon cycle, as opposed to a decline in volcanic arc degassing or the rise of early land plants, resulted in drawdown of atmospheric CO2, triggering continental scale glaciation, intense global cooling and eustatic sea-level lows recognised in the geological record. Lower atmospheric pCO2 and temperatures during the Hirnantian and Silurian glaciations suppressed CO2 removal by silicate weathering, driving 187Os/188Os and δ7Li variability, supporting the existence of climate-regulating feedbacks

    The Sediment Green-Blue Color Ratio as a Proxy for Biogenic Silica Productivity Along the Chilean Margin

    Get PDF
    Sediment cores recently collected from the Chilean Margin during D/V JOIDES Resolution Expedition 379T (JR100) document variability in shipboard-generated records of the green/blue (G/B) ratio. These changes show a strong coherence with benthic foraminiferal δ18O, Antarctic ice core records, and sediment lithology (e.g., higher diatom abundances in greener sediment intervals), suggesting a climate-related control on the G/B. Here, we test the utility of G/B as a proxy for diatom productivity at Sites J1002 and J1007 by calibrating G/B to measured biogenic opal. Strong exponential correlations between measured opal% and the G/B were found at both sites. We use the empirical regressions to generate high-resolution records of opal contents (opal%) on the Chilean Margin. Higher productivity tends to result in more reducing sedimentary conditions. Redox-sensitive sedimentary U/Th generally co-varies with the reconstructed opal% at both sites, supporting the association between sediment color, sedimentary U/Th, and productivity. Lastly, we calculated opal mass accumulation rate (MAR) at Site J1007 over the last ∼150,000 years. The G/B-derived opal MAR record from Site J1007 largely tracks existing records derived from traditional wet-alkaline digestion from the south and eastern equatorial Pacific (EEP) Ocean, with a common opal flux peak at ∼50 ka suggesting that increased diatom productivity in the EEP was likely driven by enhanced nutrient supply from the Southern Ocean rather than dust inputs as previously suggested. Collectively, our results identify the G/B ratio as a useful tool with the potential to generate reliable, high-resolution paleoceanographic records that circumvent the traditionally laborious methodology.publishedVersio

    Deep submarine infiltration of altered geothermal groundwater on the south Chilean Margin

    Get PDF
    Submarine groundwater discharge is increasingly recognized as an important component of the oceanic geochemical budget, but knowledge of the distribution of this phenomenon is limited. To date, reports of meteoric inputs to marine sediments are typically limited to shallow shelf and coastal environments, whereas contributions of freshwater along deeper sections of tectonically active margins have generally been attributed to silicate diagenesis, mineral dehydration, or methane hydrate dissociation. Here, using geochemical fingerprinting of pore water data from Site J1003 recovered from the Chilean Margin during D/V JOIDES Resolution Expedition 379 T, we show that substantial offshore freshening reflects deep and focused contributions of meteorically modified geothermal groundwater, which is likely sourced from a reservoir ~2.8 km deep in the Aysén region of Patagonia and infiltrated marine sediments during or shortly after the last glacial period. Emplacement of fossil groundwaters reflects an apparently ubiquitous phenomenon in margin sediments globally, but our results now identify an unappreciated locus of deep submarine groundwater discharge along active margins with potential implications for coastal biogeochemical processes and tectonic instability.publishedVersio
    • …
    corecore