101 research outputs found

    An alternative approach to using LiDAR remote sensing data to predict stem diameter distributions across a temperate forest landscape

    Get PDF
    Β© 2017 by the authors. We apply a spatially-implicit, allometry-based modelling approach to predict stem diameter distributions (SDDs) from low density airborne LiDAR data in a heterogeneous, temperate forest in Ontario, Canada. Using a recently published algorithm that relates the density, size, and species of individual trees to the height distribution of first returns, we estimated parameters that succinctly describe SDDs that are most consistent with each 0.25-ha LiDAR tile across a 30,000 ha forest landscape. Tests with independent validation plots showed that the diameter distribution of stems was predicted with reasonable accuracy in most cases (half of validation plots had R2 β‰₯ 0.75, and another 23% had 0.5 ≀ R2 < 0.75). The predicted frequency of larger stems was much better than that of small stems (8 ≀ x < 11 cm diameter), particularly small conifers. We used the predicted SDDs to calculate aboveground carbon density (ACD; RMSE = 21.4 Mg C/ha), quadratic mean diameter (RMSE = 3.64 cm), basal area (RMSE = 6.99 m2/ha) and stem number (RMSE = 272 stems/ha). The accuracy of our predictions compared favorably with previous studies that have generally been undertaken in simpler conifer-dominated forest types. We demonstrate the utility of our results to spatial forest management planning by mapping SDDs, the proportion of broadleaves, and ACD at a 0.25 ha resolution

    Contextual adaptation of the Personnel Evaluation Standards for assessing faculty evaluation systems in developing countries: the case of Iran

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Faculty evaluations can identify needs to be addressed in effective development programs. Generic evaluation models exist, but these require adaptation to a particular context of interest. We report on one approach to such adaptation in the context of medical education in Iran, which is integrated into the delivery and management of healthcare services nationwide.</p> <p>Methods</p> <p>Using a triangulation design, interviews with senior faculty leaders were conducted to identify relevant areas for faculty evaluation. We then adapted the published checklist of the Personnel Evaluation Standards to fit the Iranian medical universities' context by considering faculty members' diverse roles. Then the adapted instrument was administered to faculty at twelve medical schools in Iran.</p> <p>Results</p> <p>The interviews revealed poor linkages between existing forms of development and evaluation, imbalance between the faculty work components and evaluated areas, inappropriate feedback and use of information in decision making. The principles of Personnel Evaluation Standards addressed almost all of these concerns and were used to assess the existing faculty evaluation system and also adapted to evaluate the core faculty roles. The survey response rate was 74%. Responses showed that the four principles in all faculty members' roles were met <it>occasionally </it>to <it>frequently</it>. Evaluation of teaching and research had the highest mean scores, while clinical and healthcare services, institutional administration, and self-development had the lowest mean scores. There were statistically significant differences between small medium and large medical schools (p < 0.000).</p> <p>Conclusion</p> <p>The adapted Personnel Evaluation Standards appears to be valid and applicable for monitoring and continuous improvement of a faculty evaluation system in the context of medical universities in Iran. The approach developed here provides a more balanced assessment of multiple faculty roles, including educational, clinical and healthcare services. In order to address identified deficiencies, the evaluation system should recognize, document, and uniformly reward those activities that are vital to the academic mission. Inclusion of personal developmental concerns in the evaluation discussion is essential for evaluation systems.</p

    Genetic Screening of New Genes Responsible for Cellular Adaptation to Hypoxia Using a Genome-Wide shRNA Library

    Get PDF
    Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress

    CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid development of structural genomics has resulted in many "unknown function" proteins being deposited in Protein Data Bank (PDB), thus, the functional prediction of these proteins has become a challenge for structural bioinformatics. Several sequence-based and structure-based methods have been developed to predict protein function, but these methods need to be improved further, such as, enhancing the accuracy, sensitivity, and the computational speed. Here, an accurate algorithm, the CMASA (Contact MAtrix based local Structural Alignment algorithm), has been developed to predict unknown functions of proteins based on the local protein structural similarity. This algorithm has been evaluated by building a test set including 164 enzyme families, and also been compared to other methods.</p> <p>Results</p> <p>The evaluation of CMASA shows that the CMASA is highly accurate (0.96), sensitive (0.86), and fast enough to be used in the large-scale functional annotation. Comparing to both sequence-based and global structure-based methods, not only the CMASA can find remote homologous proteins, but also can find the active site convergence. Comparing to other local structure comparison-based methods, the CMASA can obtain the better performance than both FFF (a method using geometry to predict protein function) and SPASM (a local structure alignment method); and the CMASA is more sensitive than PINTS and is more accurate than JESS (both are local structure alignment methods). The CMASA was applied to annotate the enzyme catalytic sites of the non-redundant PDB, and at least 166 putative catalytic sites have been suggested, these sites can not be observed by the Catalytic Site Atlas (CSA).</p> <p>Conclusions</p> <p>The CMASA is an accurate algorithm for detecting local protein structural similarity, and it holds several advantages in predicting enzyme active sites. The CMASA can be used in large-scale enzyme active site annotation. The CMASA can be available by the mail-based server (<url>http://159.226.149.45/other1/CMASA/CMASA.htm</url>).</p

    The LabelHash algorithm for substructure matching

    Get PDF
    Background: There is an increasing number of proteins with known structure but unknown function. Determining their function would have a significant impact on understanding diseases and designing new therapeutics. However, experimental protein function determination is expensive and very time-consuming. Computational methods can facilitate function determination by identifying proteins that have high structural and chemical similarity. Results: We present LabelHash, a novel algorithm for matching substructural motifs to large collections of protein structures. The algorithm consists of two phases. In the first phase the proteins are preprocessed in a fashion that allows for instant lookup of partial matches to any motif. In the second phase, partial matches for a given motif are expanded to complete matches. The general applicability of the algorithm is demonstrated with three different case studies. First, we show that we can accurately identify members of the enolase superfamily with a single motif. Next, we demonstrate how LabelHash can complement SOIPPA, an algorithm for motif identification and pairwise substructure alignment. Finally, a large collection of Catalytic Site Atlas motifs is used to benchmark the performance of the algorithm. LabelHash runs very efficiently in parallel; matching a motif against all proteins in the 95 % sequence identity filtered non-redundant Protein Data Bank typically takes no more than a few minutes. The LabelHash algorithm is available through a web server and as a suite of standalone programs a

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as β€˜accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. β€˜Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Upstream ORF affects MYCN translation depending on exon 1b alternative splicing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>MYCN </it>gene is transcribed into two major mRNAs: one full-length (<it>MYCN) </it>and one exon 1b-spliced (<it>MYCN</it><sup>Ξ”1<it>b</it></sup>) mRNA. But nothing is known about their respective ability to translate the MYCN protein.</p> <p>Methods</p> <p>Plasmids were prepared to enable translation from the upstream (uORF) and major ORF of the two <it>MYCN </it>transcripts. Translation was studied after transfection in neuroblastoma SH-EP cell line. Impact of the upstream AUG on translation was evaluated after directed mutagenesis. Functional study with the two <it>MYCN </it>mRNAs was conducted by a cell viability assay. Existence of a new protein encoded by the <it>MYCN</it><sup>Ξ”1<it>b </it></sup>uORF was explored by designing a rabbit polyclonal antibody against a specific epitope of this protein.</p> <p>Results</p> <p>Both are translated, but higher levels of protein were seen with <it>MYCN</it><sup>Ξ”1<it>b </it></sup>mRNA. An upstream ORF was shown to have positive cis-regulatory activity on translation from <it>MYCN </it>but not from <it>MYCN</it><sup>Ξ”1<it>b </it></sup>mRNA. In transfected SH-EP neuroblastoma cells, high MYCN dosage obtained with <it>MYCN</it><sup>Ξ”1<it>b </it></sup>mRNA translation induces an antiapoptotic effect after serum deprivation that was not observed with low MYCN expression obtained with <it>MYCN </it>mRNA. Here, we showed that MYCNOT: <it>MYCN </it>Overlap Transcript, a new protein of unknown function is translated from the upstream AUG of <it>MYCN</it><sup>Ξ”1<it>b </it></sup>mRNA.</p> <p>Conclusions</p> <p>Existence of upstream ORF in <it>MYCN </it>transcripts leads to a new level of MYCN regulation. The resulting MYCN dosage has a weak but significant anti-apoptotic activity after intrinsic apoptosis induction.</p

    Proteome analysis of human gastric cardia adenocarcinoma by laser capture microdissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of gastric cardiac adenocarcinoma (GCA) has been increasing in the past two decades in China, but the molecular changes relating to carcinogenesis have not been well characterised.</p> <p>Methods</p> <p>In this study, we used a comparative proteomic approach to analyse the malignant and nonmalignant gastric cardia epithelial cells isolated by navigated laser capture microdissection (LCM) from paired surgical specimens of human GCA.</p> <p>Results</p> <p>Twenty-seven spots corresponding to 23 proteins were consistently differentially regulated. Fifteen proteins were shown to be up-regulated, while eight proteins were shown to be down-regulated in malignant cells compared with nonmalignant columnar epithelial cells. The identified proteins appeared to be involved in metabolism, chaperone, antioxidation, signal transduction, apoptosis, cell proliferation, and differentiation. In addition, expressions of HSP27, 60, and Prx-2 in GCA specimens were further confirmed by immunohistochemical and western blot analyses.</p> <p>Conclusion</p> <p>These data indicate that the combination of navigated LCM with 2-DE provides an effective strategy for discovering proteins that are differentially expressed in GCA. Such proteins may contribute in elucidating the molecular mechanisms of GCA carcinogenesis. Furthermore, the combination provides potential clinical biomarkers that aid in early detection and provide potential therapeutic targets.</p

    Independent Origins of Cultivated Coconut (Cocos nucifera L.) in the Old World Tropics

    Get PDF
    As a portable source of food, water, fuel, and construction materials, the coconut (Cocos nucifera L.) played a fundamental role in human migrations and the development of civilization across the humid tropics. Here we investigated the coconut's domestication history and its population genetic structure as it relates to human dispersal patterns. A sample of 1,322 coconut accessions, representing the geographical and phenotypic diversity of the species, was examined using ten microsatellite loci. Bayesian analyses reveal two highly genetically differentiated subpopulations that correspond to the Pacific and Indo-Atlantic oceanic basins. This pattern suggests independent origins of coconut cultivation in these two world regions, with persistent population structure on a global scale despite long-term human cultivation and dispersal. Pacific coconuts show additional genetic substructure corresponding to phenotypic and geographical subgroups; moreover, the traits that are most clearly associated with selection under human cultivation (dwarf habit, self-pollination, and β€œniu vai” fruit morphology) arose only in the Pacific. Coconuts that show evidence of genetic admixture between the Pacific and Indo-Atlantic groups occur primarily in the southwestern Indian Ocean. This pattern is consistent with human introductions of Pacific coconuts along the ancient Austronesian trade route connecting Madagascar to Southeast Asia. Admixture in coastal east Africa may also reflect later historic Arab trading along the Indian Ocean coastline. We propose two geographical origins of coconut cultivation: island Southeast Asia and southern margins of the Indian subcontinent

    Immunogenic Profiling in Mice of a HIV/AIDS Vaccine Candidate (MVA-B) Expressing Four HIV-1 Antigens and Potentiation by Specific Gene Deletions

    Get PDF
    BACKGROUND: The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function. METHODOLOGY/PRINCIPAL FINDINGS: In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1beta, respectively (referred as MVA-B DeltaA41L/DeltaB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B DeltaA41L/DeltaB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4(+) and CD8(+) T cells, with the CD8(+) T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B DeltaA41L/DeltaB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4(+) and CD8(+) T-cell immune responses. HIV-1-specific CD4(+) T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8(+) T-cell responses, MVA-B DeltaA41L/DeltaB16R induced more GPN-specific CD8(+) T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. CONCLUSIONS/SIGNIFICANCE: These findings revealed that MVA-B and MVA-B DeltaA41L/DeltaB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines
    • …
    corecore