14 research outputs found

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015 : A modelling study

    Get PDF
    Publisher Copyright: © 2017 Elsevier LtdBackground The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of—and expansion on—the 2014 analysis, which reported 80 million (95% CI 64–103) viraemic infections in 2013. Methods We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. Findings Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8–1·1) in 2015, corresponding to 71·1 million (62·5–79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). Interpretation The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. Funding John C Martin Foundation.publishersversionPeer reviewe

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Distortion correction in diffusion-weighted imaging of the breast: Performance assessment of prospective, retrospective, and combined (prospective plus retrospective) approaches

    No full text
    PurposeTo compare the effectiveness of prospective, retrospective, and combined (prospective+retrospective) EPI distortion correction methods in bilateral breast diffusion-weighted imaging (DWI) scans. MethodsFive healthy female subjects underwent an axial bilateral breast DWI exam with and without prospective B-0 inhomogeneity correction using slice-by-slice linear shimming. In each case, an additional b=0 DWI scan was performed with the polarity of the phase-encoding gradient reversed, to generate an estimated B-0 map; this map or a separately acquired B-0 map was used for retrospective correction, either alone or in combination with the prospective correction. The alignment between an undistorted, anatomical reference scan with similar contrast and the corrected b=0 DWI images with different correction schemes was assessed. ResultsThe average cross-correlation coefficient between the DWI images and the anatomical reference scan was increased from 0.82 to 0.92 over the five volunteers when combined prospective and retrospective distortion correction was applied. Furthermore, such correction substantially reduced patient-to-patient variation of the image alignment and the variability of the average apparent diffusion coefficient in normal glandular tissue. ConclusionCombined prospective and retrospective distortion correction can provide an efficient way to reduce susceptibility-induced image distortions and enhance the reliability of breast DWI exams. Magn Reson Med 78:247-253, 2017. (c) 2016 International Society for Magnetic Resonance in Medicin2

    Simultaneous parameter mapping, modality synthesis, and anatomical labeling of the brain with MR fingerprinting

    No full text
    Magnetic resonance fingerprinting (MRF) quantifies various properties simultaneously by matching measurements to a dictionary of precomputed signals. We propose to extend the MRF framework by using a database to introduce additional parameters and spatial characteristics to the dictionary. We show that, with an adequate matching technique which includes an update of selected fingerprints in parameter space, it is possible to reconstruct parametric maps, synthesize modalities, and label tissue types at the same time directly from an MRF acquisition. We compare (1) relaxation maps from a spatiotemporal dictionary against a temporal MRF dictionary, (2) synthetic diffusion metrics versus those obtained with a standard diffusion acquisition, and (3) anatomical labels generated from MRF signals to an established segmentation method, demonstrating the potential of using MRF for multiparametric brain mapping

    Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    No full text
    Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues

    Multisite Kinetic Modeling of (13)C Metabolic MR Using [1-(13)C]Pyruvate.

    No full text
    Hyperpolarized (13)C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-(13)C]pyruvate and downstream metabolites [1-(13)C]alanine, [1-(13)C]lactate, and [(13)C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues

    Comparison of Artificial Intelligence-Based Fully Automatic Chest CT Emphysema Quantification to Pulmonary Function Testing

    Get PDF
    OBJECTIVE. The purpose of this study was to evaluate an artificial intelligence (AI)based prototype algorithm for fully automated quantification of emphysema on chest CT compared with pulmonary function testing (spirometry). MATERIALS AND METHODS. A total of 141 patients (72 women, mean age +/- SD of 66.46 +/- 9.7 years [range, 23-86 years]; 69 men, mean age of 66.72 +/- 11.4 years [range, 27-91 years]) who underwent both chest CT acquisition and spirometry within 6 months were retrospectively included. The spirometry-based Tiffeneau index (TI; calculated as the ratio of forced expiratory volume in the first second to forced vital capacity) was used to measure emphysema severity; a value less than 0.7 was considered to indicate airway obstruction. Segmentation of the lung based on two different reconstruction methods was carried out by using a deep convolution image-to-image network. This multilayer convolutional neural network was combined with multilevel feature chaining and depth monitoring. To discriminate the output of the network from ground truth, an adversarial network was used during training. Emphysema was quantified using spatial filtering and attenuation-based thresholds. Emphysema quantification and TI were compared using the Spearman correlation coefficient. RESULTS. The mean TI for all patients was 0.57 +/- 0.13. The mean percentages of emphysema using reconstruction methods 1 and 2 were 9.96% +/- 11.87% and 8.04% +/- 10.32%, respectively. AI-based emphysema quantification showed very strong correlation with TI (reconstruction method 1, rho = -0.86; reconstruction method 2, rho = -0.85; both p <0.0001), indicating that AI-based emphysema quantification meaningfully reflects clinical pulmonary physiology. CONCLUSION. AI-based, fully automated emphysema quantification shows good correlation with TI, potentially contributing to an image-based diagnosis and quantification of emphysema severity

    Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016 : a modelling study

    No full text
    corecore