3,601 research outputs found

    Exploring the work–life challenges and dilemmas faced by managers and professionals who live alone

    Get PDF
    This article aims to question the dominant understanding of work–life balance or conflict as primarily a ‘work–family’ issue. It does this by exploring the experiences of managers and professionals who live alone and do not have children – a group of employees traditionally overlooked in work–life policy and research but, significantly, a group on the rise within the working age population. Semi-structured interviews with 36 solo-living managers and professionals were carried out in the UK, spanning a range of occupations. In addition to previously identified work–life issues, four themes emerged that were pressing for and specific to solo-living managers and professionals. These are articulated here as challenges and dilemmas relating to: assumptions about work and non-work time; the legitimacy of their work–life balance; lack of support connected to financial and emotional well-being; and work-based vulnerabilities

    RR Pictoris: an old nova showing superhumps and QPOs

    Full text link
    We present time-resolved V-photometry of the old nova RR Pic. Apart from the hump-like variability, the light curves show the strong flickering and random variation typical for RR Pic. We do not find any convincing evidence for the previously reported eclipse. The extrapolated eclipse phase coincides with a broad minimum, but comparing the overall shape of the light curve suggests that the eclipse should actually be located around phase 0.2. The orbital period which we derive from these data agrees well with the old one, any uncertainty is too small to account for the possible phase shift. Apart from the 3.48h period, which is usually interpreted as the orbital one, we find an additional period at P=3.78h, which we interpret as the superhump period of the system; the corresponding precession period at 1.79d is also present in the data. We also find indications for the presence of a 13min quasi-periodic oscillation.Comment: 9 pages, 7 figures + 1 Appendix figure, accepted by MNRA

    Design of a speed meter interferometer proof-of-principle experiment

    Get PDF
    The second generation of large scale interferometric gravitational wave detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter interferometer which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify Sagnac speed meters for further research towards an implementation in a future generation large scale gravitational wave detector, such as the planned Einstein Telescope observatory.Comment: Revised version: 16 pages, 6 figure

    Optical and Quasi-Optical Analysis of System Components for a Far-Infrared Space Interferometer

    Get PDF
    Many important astrophysical processes occur at wavelengths that fall within the far-infrared band of the EM spectrum, and over distance scales that require sub-arc second spatial resolution. It is clear that in order to achieve sub-arc second resolution at these relatively long wavelengths (compared to optical/near-IR), which are strongly absorbed by the atmosphere, a space-based far-IR interferometer will be required. We present analysis of the optical system for a proposed spatial-spectral interferometer, discussing the challenges that arise when designing such a system and the simulation techniques employed that aim to resolve these issues. Many of these specific challenges relate to combining the beams from multiple telescopes where the wavelengths involved are relatively short (compared to radio interferometry), meaning that care must be taken with mirror surface quality, where surface form errors not only present potential degradation of the single system beams, but also serve to reduce fringe visibility when multiple telescope beams are combined. Also, the long baselines required for sub-arc second resolution present challenges when considering propagation of the relatively long wavelengths of the signal beam, where beam divergence becomes significant if the beam demagnification of the telescopes is not carefully considered. Furthermore, detection of the extremely weak far-IR signals demands ultra-sensitive detectors and instruments capable of operating at maximum efficiency. Thus, as will be shown, care must be taken when designing each component of such a complex quasioptical system

    Clinical and cost-effectiveness of contingency management for cannabis use in early psychosis: the CIRCLE randomised clinical trial

    Get PDF
    Cannabis is the most commonly used illicit substance amongst people with psychosis. Continued cannabis use following the onset of psychosis is associated with poorer functional and clinical outcomes. However, finding effective ways of intervening has been very challenging. We examined the clinical and cost-effectiveness of adjunctive contingency management (CM), which involves incentives for abstinence from cannabis use, in people with a recent diagnosis of psychosis. CIRCLE was a pragmatic multi-centre randomised controlled trial. Participants were recruited via Early Intervention in Psychosis (EIP) services across the Midlands and South East of England. They had had at least one episode of clinically diagnosed psychosis (affective or non-affective); were aged 18 to 36; reported cannabis use in at least 12 out of the previous 24 weeks; and were not currently receiving treatment for cannabis misuse, or subject to a legal requirement for cannabis testing. Participants were randomised via a secure web-based service 1:1 to either an experimental arm, involving 12 weeks of CM plus a six-session psychoeducation package, or a control arm receiving the psychoeducation package only. The total potential voucher reward in the CM intervention was £240. The primary outcome was time to acute psychiatric care, operationalised as admission to an acute mental health service (including community alternatives to admission). Primary outcome data were collected from patient records at 18 months post-consent by assessors masked to allocation. The trial was registered with the ISRCTN registry, number ISRCTN33576045. Five hundred fifty-one participants were recruited between June 2012 and April 2016. Primary outcome data were obtained for 272 (98%) in the CM (experimental) group and 259 (95%) in the control group. There was no statistically significant difference in time to acute psychiatric care (the primary outcome) (HR 1.03, 95% CI 0.76, 1.40) between groups. By 18 months, 90 (33%) of participants in the CM group, and 85 (30%) of the control groups had been admitted at least once to an acute psychiatric service. Amongst those who had experienced an acute psychiatric admission, the median time to admission was 196 days (IQR 82, 364) in the CM group and 245 days (IQR 99, 382) in the control group. Cost-effectiveness analyses suggest that there is an 81% likelihood that the intervention was cost-effective, mainly resulting from higher mean inpatient costs for the control group compared with the CM group; however, the cost difference between groups was not statistically significant. There were 58 adverse events, 27 in the CM group and 31 in the control group. Overall, these results suggest that CM is not an effective intervention for improving the time to acute psychiatric admission or reducing cannabis use in psychosis, at least at the level of voucher reward offered

    Safety and efficacy of fluticasone propionate in the topical treatment of skin diseases

    Get PDF
    Fluticasone propionate - the first carbothioate corticosteroid - has been classified as a potent anti-inflammatory drug for dermatological use. It is available as 0.05% cream and 0.005% ointment formulations for the acute and maintenance treatment of patients with dermatological disorders such as atopic dermatitis, psoriasis and vitiligo. This glucocorticoid is characterized by high lipophilicity, high glucocorticoid receptor binding and activation, and a rapid metabolic turnover in skin. Although skin blanching following fluticasone propionate exceeds that of corticosteroids of medium strength, several clinical trials demonstrate a low potential for cutaneous and systemic side-effects, even in difficult-to-treat areas like the face, the eyelids and intertriginous areas. Even among paediatric patients with atopic dermatitis, fluticasone propionate proved to be safe and effective. These pharmacological and clinical properties are reflected by the high therapeutic index of this glucocorticoid

    Chalcogenide Glass-on-Graphene Photonics

    Get PDF
    Two-dimensional (2-D) materials are of tremendous interest to integrated photonics given their singular optical characteristics spanning light emission, modulation, saturable absorption, and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. In this paper, we present a new route for 2-D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material which can be directly deposited and patterned on a wide variety of 2-D materials and can simultaneously function as the light guiding medium, a gate dielectric, and a passivation layer for 2-D materials. Besides claiming improved fabrication yield and throughput compared to the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2-D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared (mid-IR) waveguide-integrated photodetectors and modulators
    corecore