42 research outputs found

    Coinfection rates of avian blood parasites increase with latitude in parapatric host species

    Get PDF
    Animals are frequently coinfected with multiple parasites concurrently, and advances in our sampling of these complex intra-host parasite communities have revealed important ecological impacts on their hosts. However, the spatial distributions and environmental determinants of parasite coinfection remain infrequently studied. Here, we investigated the drivers of haemosporidian blood parasite coinfection in the Bicknell's thrush (Catharus bicknelli) and grey-cheeked thrush (Catharus minimus), parapatric sister species that occur across a broad latitudinal range in northern North America. Using 298 samples from across the distributions of these species, we found high overall infection (86%) and coinfection (41%) rates within host populations. Coinfection rates within populations were highly variable across sampling sites, ranging from 7 to 75%. Latitude was a more important predictor of coinfection frequency than host species identity, with coinfections becoming more abundant at higher latitudes. The 2 host species exhibited similar parasite faunas, and an analysis of the co-occurrence patterns among haemosporidians showed that host species identity was largely not a factor in structuring which parasites were found within coinfections. To our knowledge, this is the first study to illustrate a reverse latitudinal gradient in coinfection frequency in a eukaryotic parasite system. Further work is necessary to determine whether vector ecology or some other factor is the primary proximate driver of this pattern

    The polyphyly of Plasmodium: Comprehensive phylogenetic analyses of the malaria parasites (Order Haemosporida) reveal widespread taxonomic conflict

    Get PDF
    Š 2018 The Authors. The evolutionary relationships among the apicomplexan blood pathogens known as the malaria parasites (order Haemosporida), some of which infect nearly 200 million humans each year, has remained a vexing phylogenetic problem due to limitations in taxon sampling, character sampling and the extreme nucleotide base composition biases that are characteristic of this clade. Previous phylogenetic work on the malaria parasites has often lacked sufficient representation of the broad taxonomic diversity within the Haemosporida or the multi-locus sequence data needed to resolve deep evolutionary relationships, rendering our understanding of haemosporidian lifehistory evolution and the origin of the human malaria parasites incomplete. Here we present the most comprehensive phylogenetic analysis of the malaria parasites conducted to date, using samples from a broad diversity of vertebrate hosts that includes numerous enigmatic and poorly known haemosporidian lineages in addition to genome-wide multi-locus sequence data. We find that if base composition differences were corrected for during phylogenetic analysis, we recovered a well-supported topology indicating that the evolutionary history of the malaria parasites was characterized by a complex series of transitions in life-history strategies and host usage. Notably we find that Plasmodium, the malaria parasite genus that includes the species of human medical concern, is polyphyletic with the life-history traits characteristic of this genus having evolved in a dynamic manner across the phylogeny. We find support for multiple instances of gain and loss of asexual proliferation in host blood cells and production of haemozoin pigment, two traits that have been used for taxonomic classification as well as considered to be important factors for parasite virulence and used as drug targets. Lastly, our analysis illustrates the need for a widespread reassessment of malaria parasite taxonomy

    Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens

    Get PDF
    A key question in evolutionary genetics is why certain mutations or certain types of mutation make disproportionate contributions to adaptive phenotypic evolution. In principle, the preferential fixation of particular mutations could stem directly from variation in the underlying rate of mutation to function-altering alleles. However, the influence of mutation bias on the genetic architecture of phenotypic evolution is difficult to evaluate because data on rates of mutation to function-altering alleles are seldom available. Here, we report the discovery that a single point mutation at a highly mutable site in the βA-globin gene has contributed to an evolutionary change in hemoglobin (Hb) function in high-altitude Andean house wrens (Troglodytes aedon). Results of experiments on native Hb variants and engineered, recombinant Hb mutants demonstrate that a nonsynonymous mutation at a CpG dinucleotide in the βA-globin gene is responsible for an evolved difference in Hb–O2 affinity between high- and low-altitude house wren populations. Moreover, patterns of genomic differentiation between high- and low-altitude populations suggest that altitudinal differentiation in allele frequencies at the causal amino acid polymorphism reflects a history of spatially varying selection. The experimental results highlight the influence of mutation rate on the genetic basis of phenotypic evolution by demonstrating that a large-effect allele at a highly mutable CpG site has promoted physiological differentiation in blood O2 transport capacity between house wren populations that are native to different elevations

    Let’s end taxonomic blank slates with molecular morphology

    Get PDF
    Many known evolutionary lineages have yet to be described formally due to a lack of traditional morphological characters. This is true for genetically distinctive groups within the amoeboid Placozoa animals, the protists in ponds, and the bacteria that cover nearly everything. These taxonomic tabula rasae, or blank slates, are problematic; without names, communication is hampered and other scientific progress is slowed. We suggest that the morphology of molecules be used to help alleviate this issue. Molecules, such as proteins, have structure. Proteins are even visualizable with X-ray crystallography, albeit more easily detected by and easier to work with using genomic sequencing. Given their structured nature, we believe they should not be considered as anything less than traditional morphology. Protein-coding gene content (presence/absence) can also be used easily with genomic sequences, and is a convenient binary character set. With molecular morphology, we believe that each taxonomic tabula rasa can be solved

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNÎł, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    Identifying the connection between Roman Conceptions of ‘Pure Air’ and Physical and Mental Health in Pompeian Gardens (c. 150 BC-AD 79): A Multi-Sensory Approach to Ancient Medicine

    Get PDF
    Different genres of Roman literature commented on the relationship between the condition of the environment and physical and mental health. They often refer to clear, pure, or good air as a beneficial aspect of the environment. Yet, unlike fetid air, they provide few descriptions of what constituted healthy air quality. Moreover, aside from pointing out the association between the environment and bodily condition, the writers also did not explain precisely how the link between the two was made. This paper utilizes a comparative study of ancient literature and the archaeological remains of Roman gardens in Pompeii: archaeobotanical samples, fresco paintings, location, and surviving features. Three questions are addressed in this study: First, how did the Romans identify and define pure? Second, how did air connect to the body? Third, what were the qualities of pure air and how did they benefit the body? Not only was inhalation a means of linking air to the body, but the two were also related through sensory perception. I argue that sight, sound, and olfaction were used to identify the qualities of pure air. Through the sensory process of identification, the beneficial properties of pure air were, in accordance with ancient perceptions of sensory function, taken into the body and affected health. Thus, sensory perception acted as the bridge between the environment and health

    Integrating coalescent species delimitation with analysis of host specificity reveals extensive cryptic diversity despite minimal mitochondrial divergence in the malaria parasite genus Leucocytozoon

    No full text
    Abstract Background Coalescent methods that use multi-locus sequence data are powerful tools for identifying putatively reproductively isolated lineages, though this approach has rarely been used for the study of microbial groups that are likely to harbor many unrecognized species. Among microbial symbionts, integrating genetic species delimitation methods with trait data that could indicate reproductive isolation, such as host specificity data, has rarely been used despite its potential to inform species limits. Here we test the ability of an integrative approach combining genetic and host specificity data to delimit species within the avian malaria parasite genus Leucocytozoon in central Alaska. Results We sequenced seven nuclear loci for 69 Leucocytozoon samples and used multiple species delimitation methods (GMYC and BPP models), tested for differences in host infection patterns among putative species based on 406 individual infections, and characterized parasite morphology. We found that cryptic morphology has masked a highly diverse Leucocytozoon assemblage, with most species delimitation methods recovering support for at least 21 separate species that occur sympatrically and have divergent host infection patterns. Reproductive isolation among putative species appears to have evolved despite low mtDNA divergence, and in one instance two Leucocytozoon cytb haplotypes that differed by a single base pair (~ 0.2% divergence) were supported as separate species. However, there was no consistent association between mtDNA divergence and species limits. Among cytb haplotypes that differed by one to three base pairs we observed idiosyncratic patterns of nuclear and ecological divergence, with cytb haplotype pairs found to be either conspecific, reproductively isolated with no divergence in host specificity, or reproductively isolated with divergent patterns of host specialization. Conclusion Integrating multi-locus genetic species delimitation methods and non-traditional ecological data types such as host specificity provide a novel view of the diversity of avian malaria parasites that has been missed previously using morphology and mtDNA barcodes. Species delimitation methods show that Leucocytozoon is highly species-rich in Alaska, and the genus is likely to harbor extraordinary species-level diversity worldwide. Integrating genetic and ecological data will be an important approach for understanding the diversity and evolutionary history of microbial symbionts moving forward

    Contrasting molecular and morphological evidence for the identification of an anomalous Buteo: a cautionary tale for hybrid diagnosis

    No full text
    An adult Buteo was found dead as a road-kill south of Sacramento, California, and was thought to represent the first state record of the eastern Red-shouldered Hawk (B. lineatus lineatus;). It is now a specimen in the Museum of Wildlife and Fisheries Biology (WFB 4816) at the University of California, Davis. We examined this specimen and found that many of its plumage characters differed from all other adult Red-shouldered Hawks examined, including nominate adults. Plumage markings and measurements were intermediate between Red-tailed Hawk (Buteo jamaicensis, ssp calurus) and Red-shouldered Hawk (ssp elegans), leading us to hypothesize that the bird was a hybrid. However, mtDNA sequences and nuDNA microsatellites proved definitively that the bird was a Red-shouldered Hawk, most likely of eastern origin. This case illustrates that apparent hybrids or apparent vagrants could be individuals with anomalous phenotypes caused by rare genetic variation or novel epigenetic effects

    Data from: The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict

    No full text
    The evolutionary relationships among the apicomplexan blood pathogens known as the malaria parasites (order Haemosporida), some of which infect nearly 200 million humans each year, has remained a vexing phylogenetic problem due to limitations in taxon sampling, character sampling, and the extreme nucleotide base composition biases that are characteristic of this clade. Previous phylogenetic work on the malaria parasites has often lacked sufficient representation of the broad taxonomic diversity within the Haemosporida or the multi-locus sequence data needed to resolve deep evolutionary relationships, rendering our understanding of haemosporidian life history evolution and the origin of the human malaria parasites incomplete. Here we present the most comprehensive phylogenetic analysis of the malaria parasites conducted to date, using samples from a broad diversity of vertebrate hosts that includes numerous enigmatic and poorly known haemosporidian lineages in addition to genome-wide multi-locus sequence data. We find that if base composition differences were corrected for during phylogenetic analysis, we recovered a well-supported topology indicating that the evolutionary history of the malaria parasites was characterized by a complex series of transitions in life history strategies and host usage. Notably we find that Plasmodium, the malaria parasite genus that includes the species of human medical concern, is polyphyletic with the life history traits characteristic of this genus having evolved in a dynamic manner across the phylogeny. We find support for multiple instances of gain and loss of asexual proliferation in host blood cells and production of hemozoin pigment, two traits that have been used for taxonomic classification as well as considered to be important factors for parasite virulence and used as drug targets. Lastly, our analysis illustrates the need for a widespread reassessment of malaria parasite taxonomy

    Data from: Why are tropical mountain passes ‘low’ for some species? genetic and stable-isotope tests for differentiation, migration, and expansion in elevational generalist songbirds

    No full text
    1.Most tropical bird species have narrow elevational ranges, likely reflecting climatic specialization. This is consistent with Janzen's Rule, the tendency for mountain passes to be effectively ‘higher’ in the tropics. Hence, those few tropical species that occur across broad elevational gradients (elevational generalists) represent a contradiction to Janzen's Rule. 2.Here we aim to address the following questions. Are elevational generalists being sundered by diversifying selection along the gradient? Does elevational movement cause these species to resist diversification or specialization? Have they recently expanded, suggesting that elevational generalism is short-lived in geological time? 3.To answer these questions, we tested for differentiation, movement, and expansion in four elevational generalist songbird species on the Andean west slope. We used morphology and mtDNA to test for genetic differentiation between high- and low-elevation populations. To test for elevational movements, we measured hydrogen isotope (δ2H) values of metabolically inert feathers and metabolically active liver. 4.Morphology differed for House Wren (Troglodytes aedon) and Hooded Siskin (Spinus magellanicus), but not for Cinereous Conebill (Conirostrum cinereum) and Rufous-collared Sparrow (Zonotrichia capensis), respectively. mtDNA was structured by elevation only in Z. capensis. δ2H data indicated elevational movements by two tree- and shrub-foraging species with moderate-to-high vagility (C. cinereum and S. magellanicus), and sedentary behavior by two terrestrial-foraging species with low-to-moderate vagility (T. aedon and Z. capensis). In S. magellanicus, elevational movements and lack of mtDNA structure contrast with striking morphological divergence, suggesting strong diversifying selection on body proportions across the ~50 km gradient. All species except C. cinereum exhibited mtDNA-haplotype variation consistent with recent population expansion across the elevational gradient, potentially concurrent with Holocene anthropogenic habitat conversion for agriculture. 5.In different ways, each species defies the tendency for tropical birds to have long-term stable distributions and sedentary habits. We conclude that tropical elevational generalism is rare due to evolutionary instability
    corecore