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Many known evolutionary lineages have yet to be  described formally due 

to a lack of traditional morphological characters. This is true for genetically 

distinctive groups within the amoeboid Placozoa animals, the protists in ponds, 

and the bacteria that cover nearly everything. These taxonomic tabula rasae, 

or blank slates, are problematic; without names, communication is hampered 

and other scientific progress is slowed. We suggest that the morphology of 

molecules be used to help alleviate this issue. Molecules, such as proteins, 

have structure. Proteins are even visualizable with X-ray crystallography, albeit 

more easily detected by and easier to work with using genomic sequencing. 

Given their structured nature, we believe they should not be considered as 

anything less than traditional morphology. Protein-coding gene content 

(presence/absence) can also be used easily with genomic sequences, and is a 

convenient binary character set. With molecular morphology, we believe that 

each taxonomic tabula rasa can be solved.
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Basics

Names

It is exceedingly hard for humans, whether laypeople or scientists, to communicate 
even modestly well about Earth’s biodiversity without commonly agreed upon names for 
species, groups of species, or sub-lineages within a species (Yoon, 2010). While humanity 
has yet to discover a perfect way to name these bins of organisms, biologists have been 
surprisingly consistent with their chosen mode of biodiversity classification. Linnaean 
taxonomy, currently spanning from Domain through binomials (genus and species), has 
proved durable (Schuh, 2003). The system does have some issues, such as the fact that exact 
cut offs between taxonomic ranks within this system are often arbitrary; one taxonomist’s 
genus, for example, is another’s family. Not shockingly, this has (for better or for worse) led 
to numerous name changes over time (Vences et al., 2013). Alternative systems such as 
PhyloCode (de Queiroz and Cantino, 2020) seek to improve upon Linnaeus’s system, but 
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these alternative approaches are not broadly accepted. This is 
likely because these systems have their own complexities and 
imperfections (Nixon et al., 2003). Therefore, a system birthed in 
the 1700s persists as the standardized backbone for naming newly 
discovered species, as well as the more inclusive ranks generally 
called higher taxa.

A problem

Despite a consistent framework for naming groups of 
organisms, many diverse and distinctive evolutionary lineages 
have never made their way into a formalized taxonomy, largely 
due to a lack of distinct visualizable morphological features. We, 
the authors of this paper, refer to these lineages as taxonomic 
tabula rasae or blank slates—and we consider such lineages to 
present a big problem. Again, as human scientists, we can only 
efficiently study, talk about, or conserve those lineages that 
we apply a name onto for easy discourse. If one mentions reptiles 
or Reptilia, English speakers or scientists, respectively, will know 
what is being discussed. Fewer people know what Placozoa are, 
but many invertebrate systematists can tell you it is phylum of very 
simply structured animals that lack several traits that are found 
across Metazoa (Eitel et al., 2013; Schierwater et al., 2021). Some 
might even tell you it is a highly genetically-diverse and ancient 
lineage that has few named species or higher taxonomic ranks. 
Over the last decade, this group’s organization has largely relied 
on provisional monikers with the word “clade” in their name. 
These monikers were based on the phylogeny of lineages within 
Placozoa. However, when we mention the group called Clade VI 
within Placozoa, only a handful of people on the planet would 
even know where to look up what that meant. While we do not 
expect most people to become experts on Placozoa, we believe it 
should become a group that can be easily communicated about so 
that research and understanding within this phylum may more 
properly flourish. We believe it is time to change this lack of easily 
communicated ideas, not just for Placozoa, but for all taxonomic 
tabula rasae: groups of organisms that, while often diverse, are 
poorly classified.

Almost always, taxonomic tabula rasae lack names due to a 
paucity of easily human-identified features. For example, 
placozoans basically look like miniscule, shape shifting disks—
essentially they are the pancake of the animals. For a taxonomist 
looking through a microscope, even a powerful one, there are not 
many characters to compare and differentiate the genetically 
known lineages within this phylum (Eitel et al., 2013).

The same is true for bacteria—as most look like rods, cones, or 
spirals—but again this does not even scratch the surface of the 
genetic or functional diversity in this multi-billion-year-old 
domain. Currently there are over 20,000 named bacterial and 
archaeal species and over 3,400 named genera; not too 
comprehensive though when one considers the total number of 
species of Archaea and Bacteria is estimated to be  two to four 
orders of magnitude larger than this (Oren, 2004; Pallen et al., 

2021). For most microbes, we would not even know 20%–90% of 
the diversity had it not been for the recent advent of environmental 
DNA sequencing (Tedersoo et al., 2014; Thompson et al., 2017; 
Lloyd et al., 2018). Accordingly, many microbial groups have spotty 
taxonomy outside of the lineages that are associated with or impact 
humans or human habitats. All of this also holds for protists. For 
instance, while the phylum Apicomplexa contains many well-
studied pathogens of humans, such as the malaria parasites, it has 
been estimated that this group alone may contain tens of millions 
of species (Larsen et  al., 2017)—this undoubtedly represents 
numerous unnamed yet biologically important lineages. Even 
within malaria parasites, which are among the best known lineages 
of protists, there is still need for major taxonomic revision (Galen 
et al., 2018). Similarly, database coverage is lower for bacteria in 
more remote habitats, making naming even more challenging in 
these areas (Tessler et al., 2017b). Bacteria, Archaea, Fungi, protists, 
nematodes, or anything that is microscopic (even tiny animals) or 
reduced (e.g., many parasites) tend to have far from complete 
taxonomies. To be clear, some parts of the taxonomy within each 
of these lineages are well worked out, but many parts are not, and 
we believe these fit our “blank slate” designation.

What has been tried?

How have scientists dealt with the problem of taxonomy for 
taxa that lack morphological distinction? Many take the simplest 
solution: ignore the problem. Microbial ecologists are excellent 
biodiversity-oriented researchers, and they frequently skirt the 
issue with great success. While they often name broad groups (e.g., 
bacterial phyla), they do not usually give formal names to species 
(Tessler et al., 2017a); instead they opt for dataset driven groups, 
such as operational taxonomic units or amplicon sequence 
variants (Prodan et al., 2020). In these cases, each binned lineage 
is only specific to the dataset and the methods used to analyze it. 
It works remarkably well for the purposes of most microbial 
ecologists. It is a massively successful solution to a problem (lack 
of easily namable organisms) that could have easily stifled this 
flourishing field. But this lack of taxonomic resolution is not a 
perfect long-term solution even for microbial ecology, as it makes 
it much harder to realize when a species or an unnamed broader 
lineage keeps popping up as important across independent 
datasets and studies. We  believe systematists need to apply 
taxonomic knowhow, phylogenetic mastery, and any other skills 
they might have to help speed up the rate of naming the diversity 
of visually unknowable lineages.

Of course, we  are not the first systematists to care about 
naming lineages within morphologically plain groups of 
organisms. On and off, a variety of traits have been used to help 
break through the difficulties of naming these groups. Non-visual 
characters have led to rapid advances in some groups, such as the 
chemical differences being used as characters for lichen taxa 
(Lumbsch, 1998). Secondary metabolites in plants (e.g., 
non-protein amino acids) have also been considered as potential 
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characters for taxonomy (Wink, 2003). Ecological preferences, 
while being somewhat malleable, have also been suggested as 
characters for certain taxonomic problems (Padial et al., 2010). 
Cytotaxonomy, typically the use of karyotype with taxonomy, has 
been used numerous times for plants and animals (Guerra, 2012; 
Kongim et al., 2015), and, more recently, genome architecture has 
been proposed as a significant evolutionary feature that can 
be used roughly like traditional morphology. For instance, nuclear 
and mitochondrial genome architecture were used to more 
confidently name the second and third formally classified species 
in Placozoa (Eitel et al., 2018; Osigus et al., 2019).

Unfortunately, progress has been slow—piecemeal at best. 
With so many under-classified tabula rasa groups, any solution 
must speed the pace if we wish to make significant progress.

Moving forward

A proposal

We suggest that morphology is still the key to taxonomic 
descriptions. However, we believe there is a general fallacy in most 
taxonomists’ understanding of morphology, with an undue split 
between it and molecules (Hillis, 1987), which has resulted in only 
a subset of characters being frequently considered for 
taxonomic purposes.

Morphology is, in essence, the study of organisms’ structures 
(Zangerl, 1948). Yet, due to human sensory biases, taxonomists 
tend to circumscribe “structures” to the set of features in an 
organism that they can easily perceive without much mental 
abstraction. The number of vertebrae in fishes, for example, can 
clearly and easily be used as a countable morphological division 
(Ward and Brainerd, 2007). Taxonomists can harness this type of 
character with ease. Even gestalt has its place in morphological 
identifications (think bird watching) and is an influence on 
taxonomists when they produce classifications, although it is 
typically not mentioned as a principal character. However, 
characters already go far beyond this, including auditory (Angulo 
and Reichle, 2008) and chemical (Lumbsch, 1998) realms, to name 
a few. Many times characters like these may only be detectable 
with specialized equipment or assays; gross morphology itself 
often requires tools from basic light microscopy to electron 
micrographs or even computed tomography (Tessler et al., 2016; 
De Carle et al., 2022), all which go much further than basic human 
perception. So, we ask, why do taxonomists stop here?

Here, we propose that morphology should extend far more 
into molecular structures (Figure 1). As mentioned above, one 
compelling way to describe species within tabula rasae taxa is to 
look for genome architecture. This has been true for our 
aforementioned placozoans (Eitel et  al., 2018). Genome 
architecture may well set a gold standard for describing the 
previously indescribable. Still, it is cumbersome and expensive for 
whole genomes (less so for mitochondrial genomes), both in 
terms of sequencing cost and bioinformatic resources. There can 

also be  methodological difficulty of obtaining entire genomes 
from microbes that live within an organism, such as the previously 
mentioned malaria blood parasites (Videvall, 2019). We therefore 
believe molecular morphology should at times harness, but 
ultimately not be beholden to this high bar.

At their core, all molecular features are structural—after all, 
structure is how biochemists have isolated and identified these 
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FIGURE 1

Molecules have morphology too. Traditionally, morphology has 
been limited to structures that are easily visualizable by eye or 
microscopy, such as the differences in (A) flower color and petal 
dimensions. However, morphology can be found at a number of 
levels when examining molecular data. (B) Gene content, gene 
order, and synteny are strong characters, as are karyotypes. 
(C) Protein conformation is three-dimensional, and easily 
modeled for comparisons. Lastly, even (D) amino acids and 
(E) nucleotides have clear differences in physical structure, much 
like traditional morphology.
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components. Adenine and guanine may both be  considered 
purine nucleobases, but they certainly would not be confused for 
one another structurally. The same is true for each amino acid, 
many of which also have impacts on protein structure due to 
features such as varying degrees of hydrophobicity (Rudinger, 
1976). The presence of most functioning genes also leads to a 
rather clear product: protein. A number of such proteins have 
even been characterized since 1934, when X-ray crystallography 
began to make it possible to visualize these macromolecules 
(Giegé, 2013). Combine traditional X-ray work with protein 
modeling, and suddenly the shape, structures, and binding sites 
can become clear visually for a broad swath of proteins 
(Waterhouse et al., 2018). Even more proteins have been assayed 
for their functionality. Protein functionality is often as distinctive 
as morphology, such as for leech anticoagulants that are often 
highly distinctive for species or lineages (Iwama et al., 2021, 2022).

Even single nucleotides can be used for species delineation 
(DeSalle et al., 2005), although this remains controversial among 
systematists. However, using more nucleotides, at least one 
hundred (and likely many more) species have been named based 
principally on DNA (Renner, 2016). At least one higher taxon (a 
family of mosses) has also been named using DNA only (Shaw 
et al., 2010). Still, the argument for nucleotides as characters has 
not focused on morphology, which we again point out that it is. 
Instead the argument has focused more on genotype as being 
sufficient and perfectly biologically relevant to be used as a type of 
character for classification purposes, so long as it is sufficiently 
consistent within a hypothesized lineage.

So, as a practical measure, at what level should this molecular 
morphology be harnessed for creating enduring taxonomies for 
tabula rasae lineages? If all molecules are structural and thus 
within the purview of morphology, then the answer is easy: 
nucleotides. While we believe this to be true at some level, we also 
know that one of the special and beneficial features of morphology 
is that it takes genotype and processes it out as phenotype. 
Furthermore, morphological phenotype is often (but far from 
exclusively) the aggregate of multiple alleles; a much higher bar 
than a single genotypic character. Accordingly, molecular 
morphology might be best to be at minimum one step removed 
from the simple genetics of an organism. Amino acids, again 
structural, are indeed one step removed; they exist as the simple 
output of the instructions given by codons, triplicates of 
nucleotides within a genetic reading frame. We believe this again 
to be a fair position, but that it is unlikely to be accepted by the 
general community as it can be too highly malleable within some 
genes for most taxonomists’ tastes, varying too often 
among individuals.

Protein can likely provide a more stable molecular 
morphology standard. Proteins are separated by a few levels from 
base genetics, and they can be well characterized physically when 
needed (again, think X-ray crystallography and modeling). Much 
like DNA, protein structures can vary or be  conserved across 
species (Undheim et  al., 2016), and we  certainly suggest this 
be used within molecular morphology. However, we also suggest 

that gene content —the presence or absence of protein coding 
genes—be used as a relatively easy (as far as genomics work goes) 
way to efficiently sort out taxonomies. Yes, it requires serious 
sequencing efforts, but for many groups like bacteria genomic 
sequences are readily available.

Gene content and protein variability can still be challenging. 
Orthology has various definitions and real complexity (Gabaldón 
and Koonin, 2013), and, like species concepts (Wheeler and Meier, 
2000), providing a simple definition is difficult. While we do not 
think this will be solved anytime soon, we do believe that using 
the gene content of multiple protein coding genes will help to 
remove the biases dealt through orthology philosophy and 
algorithms. (We would similarly advocate for multiple 
morphological characters, whenever possible, for any data type.) 
Furthermore, we point out that homology was one of the most 
fought over topics in systematics prior to the emerging genomic 
era (Wagner, 1989); that is to say, the issue we  face for gene 
orthology still remains problematic for morphological data.

There are other advantages outside of classification for 
molecular morphology. Some of these characters could 
be considered for adding to phylogenomic matrices. As we have 
shown, even a few dozen morphological characters can be  of 
importance for important recalcitrant nodes, such as determining 
the sister to all other Metazoa (Neumann et al., 2021).

Molecular morphology can also be  well integrated into a 
philosophy that is commonly employed by systematists when 
focusing on taxonomy: multiple lines of evidence. For instance, 
using molecules in their raw form, such as nucleotides, along with 
morphology or geography has been a popular tactic (DeSalle et al., 
2005). Substituting traditional morphology with molecular 
morphology could also work as long as the focus was on 
something like gene content, while the raw molecular data focused 
on stretches of nucleotides shared across species.

Taxonomic tabula rasa no more

Here, we will give a brief walk through of how molecular 
morphology might be incorporated into making a taxonomy for 
a tabula rasa lineage. Most importantly, we  are indeed 100% 
stating that molecular morphology should be used in the diagnosis 
for species descriptions. Of course, other data would be wonderful, 
as they can add color and are more practical for field practitioners. 
Still, this extra data for visually similar taxa could be something 
like geography or host, which we do not suggest should be used as 
principal characters but can be very useful for working with given 
lineages when coupled with molecular morphology.

So, let us take an example of Placozoa: a phylum that 
persisted with only one described species for a century. While 
two more species have subsequently been described (Eitel et al., 
2018; Osigus et al., 2019), the progress has been slow and costly. 
Furthermore, one of them principally relied on genome 
architecture (Eitel et al., 2018), likely the highest quality form 
of molecular morphology. Still, it has been estimated that there 
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are potentially hundreds of species, with many lineages already 
clearly identified with 16S data (Eitel and Schierwater, 2010). 
When assessing genome assemblies for many of these lineages, 
we find that lineages often vary by hundreds of orthologs that 
are uniquely present or absent. Tens, let alone hundreds, of 
characters seems like more than enough to define higher taxa. 
Given this, members of our group published a backbone 
taxonomy for Placozoa, naming classes through a new species 
using uniquely present genes (Tessler et  al., 2022). As an 
example of this, we present Figure 2, which highlights the 600 
orthologous genes that are uniquely present for the main clade 
of Placozoa as well as the 76 that are uniquely present for the 
sister lineage. The large quantity of genes present in one clade, 
but not the other, gave confidence to name these as different 
classes (despite there being only one obvious morphological 
difference). Furthermore, functional groups of genes also 
varied, such as the GPCRs that are highlighted. The decision 
was also congruent with molecularly-calibrated divergence 
times. Within the morphologically invariant main clade of 
Placozoa (blue in the figure), we were able to similarly use the 
quantity of uniquely present and absent orthologs to name a 
new species, genus, families, and orders.

Other molecular morphological characters like protein 
structure could just as easily come into play for naming species or 
higher taxa. For instance, molecular morphology (using protein 
modeling and morphometrics) has recently been used to define 
synapomorphies for molecularly identified clades; this is likely, in 
the author’s words, “the first report of a synapomorphy defined 
from a molecule’s shape in the study of arthropod phylogenetics” 
(Santibáñez-López et  al., 2018). Hopefully this is just the 
beginning of this use of protein models. Again, adding in ecology 
or geography can help where applicable, but many not always be 
of use. For instance, placozoans function similarly (at least in the 
lab where most observations occur) and often have broad, 
overlapping ranges. Still there are some differences that can 
be added to help tease taxa apart.

This approach will require a large degree of expertise, as is 
always the case for taxonomy. However, we  envision 
phylogenomicists helping with this role, moving from principally 
reconstructing relationships towards applying their data.

Last thoughts

While interesting ideas in taxonomic automation are also 
being put forth for microbes (Pallen et  al., 2021), for now, 
we  suggest caution on that front. Automation has also been 
proposed based on DNA barcodes over the last few decades, but 
it failed to catch on in a broad way and has been argued against 
(Hubert and Hanner, 2015). Furthermore, automated approaches 
can be prone to the foibles of the methods and models used in the 
automated analysis, making it a major problem if thousands or a 
million taxa are named at once. For now, traditional taxonomy 
with expert interpretations continues to remain the most enduring 

system, so we  suggest it remains the focus for taxonomic 
tabula rasae.

Overall, we believe the time to act on molecular morphology 
is now, as sequencing technologies and bioinformatics have 
matured. Whatever the exact level of molecular morphology 
taxonomists use to help alleviate the taxonomic tabula rasae 
problem is not of major concern to us. Taxonomists—as they 
have for centuries—will be the ones to decide when and where 
a cutoff is most appropriate. It will probably vary by lineage, or 
taxonomist, as is the case for most commonly used 
morphological features.

Data availability statement
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corresponding author.

FIGURE 2

An example of molecular morphology in practice. Nearly all 
lineages of Placozoa look roughly like miniature pancakes (blue 
circle). Polyplacotoma mediterranea (green circle) is the only 
species within the phylum that is clearly morphologically distinct. 
Based on this single morphological trait difference, it would 
be easy to mistake Placozoa as a non-diverse group. However, 
this is not the case. While we arbitrarily depict three lineages in 
blue, there are at least two dozen cryptic species (with many 
more presumed to exist) and they are highly divergent 
genetically. To make a backbone higher taxonomy for Placozoa, 
our recent study used molecular morphology (via gene content) 
to clarify the size of the difference between lineages (Tessler 
et al., 2022). As 600 uniquely present genes were found for the 
main clade of Placozoa and 76 uniquely present genes were 
found for P. mediterranea, the two lineages were classified at the 
class level (which was also supported by a time-calibrated 
phylogeny). The uniquely present genes included functionally 
relevant genes, such as the 57 GPRs labeled above. Uniquely 
present, in this case, means orthologs that were only found in 
those clades.
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