331 research outputs found

    Allyship for the Rural Health Care Workforce

    Get PDF
    The COVID-19 pandemic revealed a lot about the American impressive yet fragile and overtaxed health care system. Our support systems – both institutional and human- were taxed. Building our network through a variety of methods can help to strengthen our support system while also helping to dismantle the structural inequities that have negative consequences for our workforce and for patient care. Seeking allies in medicine has become an integral component of building one’s network and becoming an ally for those communities that are isolated or under resourced and for those who are underrepresented in medicine has become an important way to help promote structural change at the institutional level

    Combined Genome Scans for Body Stature in 6,602 European Twins: Evidence for Common Caucasian Loci

    Get PDF
    Twin cohorts provide a unique advantage for investigations of the role of genetics and environment in the etiology of variation in common complex traits by reducing the variance due to environment, age, and cohort differences. The GenomEUtwin (http://www.genomeutwin.org) consortium consists of eight twin cohorts (Australian, Danish, Dutch, Finnish, Italian, Norwegian, Swedish, and United Kingdom) with the total resource of hundreds of thousands of twin pairs. We performed quantitative trait locus (QTL) analysis of one of the most heritable human complex traits, adult stature (body height) using genome-wide scans performed for 3,817 families (8,450 individuals) derived from twin cohorts from Australia, Denmark, Finland, Netherlands, Sweden, and United Kingdom with an approximate ten-centimorgan microsatellite marker map. The marker maps for different studies differed and they were combined and related to the sequence positions using software developed by us, which is publicly available (https://apps.bioinfo.helsinki.fi/software/cartographer.aspx). Variance component linkage analysis was performed with age, sex, and country of origin as covariates. The covariate adjusted heritability was 81% for stature in the pooled dataset. We found evidence for a major QTL for human stature on 8q21.3 (multipoint logarithm of the odds 3.28), and suggestive evidence for loci on Chromosomes X, 7, and 20. Some evidence of sex heterogeneity was found, however, no obvious female-specific QTLs emerged. Several cohorts contributed to the identified loci, suggesting an evolutionarily old genetic variant having effects on stature in European-based populations. To facilitate the genetic studies of stature we have also set up a website that lists all stature genome scans published and their most significant loci (http://www.genomeutwin.org/stature_gene_map.htm)

    Common genetic variation in the Estrogen Receptor Beta (ESR2) gene and osteoarthritis: results of a meta-analysis

    Get PDF
    Background: The objective of this study was to examine the relationship between common genetic variation of the ESR2 gene and osteoarthritis.Methods: In the discovery study, the Rotterdam Study-I, 7 single nucleotide polymorphisms (SNPs) were genotyped and tested for association with hip (284 cases, 2772 controls), knee (665 cases, 2075 controls), and hand OA (874 cases, 2184 controls) using an additive model. In the replication stage one SNP (rs1256031) was tested in an additional 2080 hip, 1318 knee and 557 hand OA cases and 4001, 2631 and 1699 controls respectively. Fixed- and random-effects meta-analyses were performed over the complete dataset including 2364 hip, 1983 knee and 1431 hand OA cases and approximately 6000 controls.Results: The C allele of rs1256031 was associated with a 36% increased odds of hip OA in women of the Rotterdam Study-I (OR 1.36, 95% CI 1.08-1.70, p = 0.009). Haplotype analysis and analysis of knee- and hand OA did not give additional information. With the replication studies, the meta-analysis did not show a significant effect of this SNP on hip OA in the total population (OR 1.06, 95% CI 0.99-1.15, p = 0.10). Stratification according to gender did not change the results. In this study, we had 80% power to detect an odds ratio of at least 1.14 for hip OA (α = 0.05).Conclusion: This study showed that common genetic variation in the ESR2 gene is not likely to influence the risk of osteoarthritis with effects smaller than a 13% increase

    Meta-analysis: Neither quick nor easy

    Get PDF
    BACKGROUND: Meta-analysis is often considered to be a simple way to summarize the existing literature. In this paper we describe how a meta-analysis resembles a conventional study, requiring a written protocol with design elements that parallel those of a record review. METHODS: The paper provides a structure for creating a meta-analysis protocol. Some guidelines for measurement of the quality of papers are given. A brief overview of statistical considerations is included. Four papers are reviewed as examples. The examples generally followed the guidelines we specify in reporting the studies and results, but in some of the papers there was insufficient information on the meta-analysis process. CONCLUSIONS: Meta-analysis can be a very useful method to summarize data across many studies, but it requires careful thought, planning and implementation

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Novel Genetic Variants for Cartilage Thickness and Hip Osteoarthritis

    Get PDF
    Osteoarthritis is one of the most frequent and disabling diseases of the elderly. Only few genetic variants have been identified for osteoarthritis, which is partly due to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage thickness, one of the structural components of joint health. We conducted a genome-wide association study of minimal joint space width (mJSW), a proxy for cartilage thickness, in a discovery set of 13,013 participants from five different cohorts and replication in 8,227 individuals from seven independent cohorts. We identified five genome-wide significant (GWS, P≤5·0×10−8) SNPs annotated to four distinct loci. In addition, we found two additional loci that were significantly replicated, but results of combined meta-analysis fell just below the genome wide significance threshold. The four novel associated genetic loci were located in/near TGFA (rs2862851), PIK3R1 (rs10471753), SLBP/FGFR3 (rs2236995), and TREH/DDX6 (rs496547), while the other two (DOT1L and SUPT3H/RUNX2) were previously identified. A systematic prioritization for underlying causal genes was performed using diverse lines of evidence. Exome sequencing data (n = 2,050 individuals) indicated that there were no rare exonic variants that could explain the identified associations. In addition, TGFA, FGFR3 and PIK3R1 were differentially expressed in OA cartilage lesions versus non-lesioned cartilage in the same individuals. In conclusion, we identified four novel loci (TGFA, PIK3R1, FGFR3 and TREH) and confirmed two loci known to be associated with cartilage thickness.The identified associations were not caused by rare exonic variants. This is the first report linking TGFA to human OA, which may serve as a new target for future therapies

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Genetic influences on exercise participation in 37.051 twin pairs from seven countries

    Get PDF
    Background. A sedentary lifestyle remains a major threat to health in contemporary societies. To get more insight in the relative contribution of genetic and environmental influences on individual differences in exercise participation, twin samples from seven countries participating in the GenomEUtwin project were used. Methodology. Self-reported data on leisure time exercise behavior from Australia, Denmark, Finland, Norway, the Netherlands, Sweden and United Kingdom were used to create a comparable index of exercise participation in each country (60 minutes weekly at a minimum intensity of four metabolic equivalents). Principal Findings. Modest geographical variation in exercise participation was revealed in 85,198 subjects, aged 19-40 years. Modeling of monozygotic and dizygotic twin resemblance showed that genetic effects play an important role in explaining individual differences in exercise participation in each country. Shared environmental effects played no role except for Norwegian males. Heritability of exercise participation in males and females was similar and ranged from 48% to 71% (excluding Norwegian males). Conclusions. Genetic variation is important in individual exercise behavior and may involve genes influencing the acute mood effects of exercise, high exercise ability, high weight loss ability, and personality. This collaborative study suggests that attempts to find genes influencing exercise participation can pool exercise data across multiple countries and different instruments.Background. A sedentary lifestyle remains a major threat to health in contemporary societies. To get more insight in the relative contribution of genetic and environmental influences on individual differences in exercise participation, twin samples from seven countries participating in the GenomEUtwin project were used. Methodology. Self-reported data on leisure time exercise behavior from Australia, Denmark, Finland, Norway, the Netherlands, Sweden and United Kingdom were used to create a comparable index of exercise participation in each country (60 minutes weekly at a minimum intensity of four metabolic equivalents). Principal Findings. Modest geographical variation in exercise participation was revealed in 85,198 subjects, aged 19-40 years. Modeling of monozygotic and dizygotic twin resemblance showed that genetic effects play an important role in explaining individual differences in exercise participation in each country. Shared environmental effects played no role except for Norwegian males. Heritability of exercise participation in males and females was similar and ranged from 48% to 71% (excluding Norwegian males). Conclusions. Genetic variation is important in individual exercise behavior and may involve genes influencing the acute mood effects of exercise, high exercise ability, high weight loss ability, and personality. This collaborative study suggests that attempts to find genes influencing exercise participation can pool exercise data across multiple countries and different instruments.Background. A sedentary lifestyle remains a major threat to health in contemporary societies. To get more insight in the relative contribution of genetic and environmental influences on individual differences in exercise participation, twin samples from seven countries participating in the GenomEUtwin project were used. Methodology. Self-reported data on leisure time exercise behavior from Australia, Denmark, Finland, Norway, the Netherlands, Sweden and United Kingdom were used to create a comparable index of exercise participation in each country (60 minutes weekly at a minimum intensity of four metabolic equivalents). Principal Findings. Modest geographical variation in exercise participation was revealed in 85,198 subjects, aged 19-40 years. Modeling of monozygotic and dizygotic twin resemblance showed that genetic effects play an important role in explaining individual differences in exercise participation in each country. Shared environmental effects played no role except for Norwegian males. Heritability of exercise participation in males and females was similar and ranged from 48% to 71% (excluding Norwegian males). Conclusions. Genetic variation is important in individual exercise behavior and may involve genes influencing the acute mood effects of exercise, high exercise ability, high weight loss ability, and personality. This collaborative study suggests that attempts to find genes influencing exercise participation can pool exercise data across multiple countries and different instruments.Peer reviewe
    corecore