139 research outputs found
Currarino syndrome and microcephaly due to a rare 7q36.2 microdeletion: a case report
Background: Currarino syndrome is a rare condition characterized by presacral mass, anorectal malformation and sacral dysgenesis.
Case presentation: We report the case of a child that presented chronic constipation, encopresis and mycrocephaly. The characteristics were initially compatible with a case of functional constipation and a therapy with polyethylene glycol was prescribed. After a year, because of poor response, a plain abdominal X-ray was performed, detecting sacrum abnormalities. Finally, a CGH-array analysis was performed and a form of Currarino Syndrome caused by a rare 7q36 microdeletion, was diagnosed.
Conclusion: Occult spinal dysraphism should be suspected in case of poor polyethylene glycol responder constipation, even when evident sacral abnormalities on the physical examination are not detected
Use of Natural Agents and Agrifood Wastes for the Treatment of Skin Photoaging
Photoaging is the premature aging of the skin caused by repeated exposure to ultraviolet (UV) rays. The harmful effects of UV rays—from the sun or from artificial sources—alter normal skin structures and cause visible damage, especially in the most exposed areas. Fighting premature aging is one of the most important challenges of the medical landscape. Additionally, consumers are looking for care products that offer multiple benefits with reduced environmental and economic impact. The growing requests for bioactive compounds from aromatic plants for pharmaceutical and cosmetic applications have to find new sustainable methods to increase the effectiveness of new active formulations derived from eco-compatible technologies. The principle of sustainable practices and the circular economy favor the use of bioactive components derived from recycled biomass. The guidelines of the European Commission support the reuse of various types of organic biomass and organic waste, thus transforming waste management problems into economic opportunities. This review aims to elucidate the main mechanisms of photoaging and how these can be managed using natural renewable sources and specific bioactive derivatives, such as humic extracts from recycled organic biomass, as potential new actors in modern medicine
Isotopic evidences for microbiologically mediated and direct C input to soil compounds from three different leaf litters during their decomposition
We show the potentiality of coupling together different compound-specific isotopic analyses in a laboratory experiment, where 13C-depleted leaf litter was incubated on a 13C-enriched soil. The aim of our study was to identify the soil compounds where the C derived from three different litter species is retained. Three 13C-depleted leaf litter (Liquidambar styraciflua L., Cercis canadensis L. and Pinus taeda L., δ13CvsPDB ≈ −43‰), differing in their degradability, were incubated on a C4 soil (δ13CvsPDB ≈ −18‰) under laboratory-controlled conditions for 8 months. At harvest, compound-specific isotope analyses were performed on different classes of soil compounds [i.e. phospholipids fatty acids (PLFAs), n-alkanes and soil pyrolysis products]. Linoleic acid (PLFA 18:2ω6,9) was found to be very depleted in 13C (δ13CvsPDB ≈ from −38 to −42‰) compared to all other PLFAs (δ13CvsPDB ≈ from −14 to −35‰). Because of this, fungi were identified as the first among microbes to use the litter as source of C. Among n-alkanes, long-chain (C27–C31) n-alkanes were the only to have a depleted δ13C. This is an indication that not all of the C derived from litter in the soil was transformed by microbes. The depletion in 13C was also found in different classes of pyrolysis products, suggesting that the litter-derived C is incorporated in less or more chemically stable compounds, even only after 8 months decomposition
MKS3/TMEM67 mutations are a major cause of COACH syndrome, a joubert syndrome related disorder with liver involvement
The acronym COACH defines an autosomal recessive condition of Cerebellar vermis hypo/
aplasia, Oligophrenia, congenital Ataxia, Coloboma and Hepatic fibrosis. Patients present the
“molar tooth sign”, a midbrain-hindbrain malformation pathognomonic for Joubert Syndrome (JS) and Related Disorders (JSRDs). The main feature of COACH is congenital hepatic fibrosis (CHF), resulting from malformation of the embryonic ductal plate. CHF is invariably found also in Meckel syndrome (MS), a lethal ciliopathy already found to be allelic with JSRDs at the CEP290 and RPGRIP1L genes. Recently, mutations in the MKS3 gene (approved symbol TMEM67), causative of about 7% MS cases, have been detected in few Meckel-like and pure JS patients. Analysis of MKS3 in 14 COACH families identified mutations in 8 (57%). Features such as colobomas and nephronophthisis were found only in a subset of mutated cases. These data confirm COACH as a distinct JSRD subgroup with core features of JS plus CHF, which major gene is MKS3, and further strengthen gene-phenotype correlates in JSRDs
Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care
Mowat-Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype-phenotype correlations of MWS.MethodsIn a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations.ResultsAll anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluation of MWS to date, we define its clinical evolution occurring with age and derive suggestions for patient management. Furthermore, we observe that its severity correlates with the kind of ZEB2 variation involved, ranging from ZEB2 locus deletions, associated with severe phenotypes, to rare nonmissense intragenic mutations predicted to preserve some ZEB2 protein functionality, accompanying milder clinical presentations.ConclusionKnowledge of the phenotypic spectrum of MWS and its correlation with the genotype will improve its detection rate and the prediction of its features, thus improving patient care.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.221
Recommended from our members
Rethinking soil water repellency and its management
Soil water repellency (SWR) is a widespread challenge to plant establishment and growth. Despite considerable research, it remains a recalcitrant problem for which few alleviation technologies or solutions have been developed. Previous research has focused on SWR as a problem to be overcome, however, it is an inherent feature of many native ecosystems where it contributes to ecosystem functions. Therefore, we propose a shift in the way SWR is perceived in agriculture and in ecological restoration, from a problem to be solved, to an opportunity to be harnessed. A new focus on potential ecological benefits of SWR is particularly timely given increasing incidence, frequency and severity of hotter droughts in many regions of the world. Our new way of conceptualising SWR seeks to understand how SWR can be temporarily alleviated at a micro-scale to successfully establish plants, and then harnessed in the longer term and at larger spatial scales to enhance soil water storage to act as a “drought-proofing” tool for plant survival in water-limited soils. For this to occur, we suggest research focusing on the alignment of physico-chemical and microbial properties and dynamics of SWR and, based on this mechanistic understanding, create products and interventions to improve success of plant establishment in agriculture, restoration and conservation contexts. In this paper, we outline the rationale for a new way of conceptualising SWR, and the research priorities needed to fill critical knowledge gaps in order to harness the ecological benefits from managing SWR
Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care
Purpose: Mowat–Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype–phenotype correlations of MWS. Methods: In a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations. Results: All anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluati
- …