11 research outputs found

    Genetic investigation of the ubiquitin-protein ligase E3A gene as putative target in Angelman syndrome

    Get PDF
    BACKGROUND Angelman syndrome (AS) is caused by maternal chromosomal deletions, imprinting defects, paternal uniparental disomy involving chromosome 15 and the ubiquitin-protein ligase UBE3A gene mutations. However the genetic basis remains unclear for several patients. AIM To investigate the involvement of UBE3A gene in AS and identifying new potential genes using exome sequencing. METHODS We established a cohort study in 50 patients referred to Farhat Hached University Hospital between 2006 and 2021, with a strong suspicion of AS and absence of chromosomal aberrations. The UBE3A gene was screened for mutation detection. Two unrelated patients issued from consanguineous families were subjected to exome analysis. RESULTS We describe seven UBE3A variants among them 3 none previously described including intronic variants c.2220+14T>C (intron14), c.2507+43T>A (Exon15) and insertion in Exon7: c.30-47_30-46. The exome sequencing revealed 22 potential genes that could be involved in AS-like syndromes that should be investigated further. CONCLUSION Screening for UBE3A mutations in AS patients has been proven to be useful to confirm the diagnosis. Our exome findings could rise to new potential alternative target genes for genetic counseling

    Case report: 7p22.3 deletion and 8q24.3 duplication in a patient with epilepsy and psychomotor delay—Does both possibly act to modulate a candidate gene region for the patient’s phenotype?

    Get PDF
    Background: Psychomotor delay, epilepsy and dysmorphic features are clinical signs which are described in multiple syndromes due to chromosomal imbalances or mutations involving key genes implicated in the stages of Early Embryonic Development. In this context, we report a 10 years old Tunisian patient with these three signs. Our objective is to determine the cause of developmental, behavioral and facial abnormalities in this patient.Methods: We used banding cytogenetics (karyotype) and Array Comparative Genomic Hybridization (Array CGH) to this purpose.Results: The karyotype was in favor of a derivative of chromosome 7 in the patient and Array CGH analysis revealed a loss of genetic material in 7p22.3-p22.1 (4,56 Mb) with a gain at 8q24.23-q24 (9.20 Mb) resulting from maternal 7/8 reciprocal translocation. An in silico analysis of the unbalanced region was carried out and showed that the 7p22.3-p22.1 deletion contains eight genes. Among them, BRAT1 gene, previously described in several neurodevelopmental diseases, may be a candidate gene which absence could be correlated to the patient’s phenotype. However, the 8q24.23-q24 duplication could be involved in the phenotype of this patient.Conclusion: In this study, we report for the first time a 7p deletion/8q duplication in a patient with psychomoteur delay, epilepsy and facial dysmorphism. Our study showed that Array CGH still useful for delivering a conclusive genetic diagnosis for patients having neurodevelopmental abnormalities in the era of next-generation sequencing

    Further report of MEDS syndrome: Clinical and molecular delineation of a new Tunisian case

    No full text
    International audienceRecently, an autosomal recessive disorder including the triad of microcephaly, infantile epileptic encephalopathy, and permanent neonatal diabetes syndrome (MEDS, OMIM#614231) has emerged as a new distinguishing syndrome. Eight cases of whom seven from Arab countries, have been reported in association with biallelic variants in the IER3IP1 gene (Immediate early response-3 interacting protein-1). Here, we describe a Tunisian boy who presented with permanent neonatal diabetes, microcephaly, generalized seizures and hypovirilized external genitalia consisting of a small genitalia and unilateral cryptorchidism. Chromosomal analysis indicated a 46, XY karyotype in all metaphases. Exome sequencing identified a homozygous missense variant (c.62 T > G; p. Val21Gly) in the IER3IP1 gene, that is predicted to alter the protein structure within the hydrophobic/transmembrane. This variant was previously reported in two cases associated with MEDS. This is the first reported case of MEDS in Tunisia. Our report focuses on the IER3IP1 related phenotypic spectrum and assumes abnormal genitalia as part of the syndrome. Consequently, we recommend to perform hormonal testing on this topic to understand the effect of the IER3IP1 variant on the male genital pathway

    Genetic investigation of the ubiquitin-protein ligase E3A gene as putative target in Angelman syndrome

    Get PDF
    BACKGROUND Angelman syndrome (AS) is caused by maternal chromosomal deletions, imprinting defects, paternal uniparental disomy involving chromosome 15 and the ubiquitin-protein ligase UBE3A gene mutations. However the genetic basis remains unclear for several patients. AIM To investigate the involvement of UBE3A gene in AS and identifying new potential genes using exome sequencing. METHODS We established a cohort study in 50 patients referred to Farhat Hached University Hospital between 2006 and 2021, with a strong suspicion of AS and absence of chromosomal aberrations. The UBE3A gene was screened for mutation detection. Two unrelated patients issued from consanguineous families were subjected to exome analysis. RESULTS We describe seven UBE3A variants among them 3 none previously described including intronic variants c.2220+14T>C (intron14), c.2507+43T>A (Exon15) and insertion in Exon7: c.30-47_30-46. The exome sequencing revealed 22 potential genes that could be involved in AS-like syndromes that should be investigated further. CONCLUSION Screening for UBE3A mutations in AS patients has been proven to be useful to confirm the diagnosis. Our exome findings could rise to new potential alternative target genes for genetic counseling

    Additional evidence for the role of chromosomal imbalances and SOX8, ZNRF3 and HHAT gene variants in early human testis development

    No full text
    Abstract Background Forty-six ,XY Differences/Disorders of Sex Development (DSD) are characterized by a broad phenotypic spectrum ranging from typical female to male with undervirilized external genitalia, or more rarely testicular regression with a typical male phenotype. Despite progress in the genetic diagnosis of DSD, most 46,XY DSD cases remain idiopathic. Methods To determine the genetic causes of 46,XY DSD, we studied 165 patients of Tunisian ancestry, who presented a wide range of DSD phenotypes. Karyotyping, candidate gene sequencing, and whole-exome sequencing (WES) were performed. Results Cytogenetic abnormalities, including a high frequency of sex chromosomal anomalies (85.4%), explained the phenotype in 30.9% (51/165) of the cohort. Sanger sequencing of candidate genes identified a novel pathogenic variant in the SRY gene in a patient with 46,XY gonadal dysgenesis. An exome screen of a sub-group of 44 patients with 46,XY DSD revealed pathogenic or likely pathogenic variants in 38.6% (17/44) of patients. Conclusion Rare or novel pathogenic variants were identified in the AR, SRD5A2, ZNRF3, SOX8, SOX9 and HHAT genes. Overall our data indicate a genetic diagnosis rate of 41.2% (68/165) in the group of 46,XY DSD

    CC2D2A Mutations in Meckel and Joubert Syndromes Indicate a Genotype-Phenotype Correlation

    No full text
    Meckel-Gruber syndrome (MKS) is a lethal fetal disorder characterized by diffuse renal cystic dysplasia, polydactyly, a brain malformation that is usually occipital encephalocele, and/or vermian agenesis, with intrahepatic biliary duct proliferation. Joubert syndrome (JBS) is a viable neurological disorder with a characteristic "molar tooth signs' (MTS) on axial images reflecting cerebellar vermian hypoplasia/dysplasia. Both conditions are classified as ciliopathies with an autosomal recessive mode of inheritance. Allelism of MKS and JBS has been reported for TMEM67/MKS3, CEP290/MKS4, and RPGRIP1L/MKS5. Recently, one homozygous splice mutation with a founder effect was reported in the CC2D2A gene in Finnish fetuses with MKS, defining the 6th locus for MKS. Shortly thereafter, CC2D2A mutations were also reported in JBS. The analysis of the CC2D2A gene in our series of MKS fetuses, identified 14 novel truncating mutations in 11 cases. These results confirm the involvement of CC2D2A in MKS and reveal a major contribution of CC2D2A to the disease. We also identified three missense CC2D2A mutations in two JBS cases. Therefore, and in accordance with the data reported regarding RPGRIP1L, our results indicate phenotype-genotype correlations, as missense and presumably hypomorphic mutations lead to JBS while all null alleles lead to MKS. Hum Mutat 30:1574-1582, 2009. (C) 2009 Wiley-Liss, Inc

    High-throughput Sequencing of a 4.1 Mb Linkage Interval Reveals <i>FLVCR2</i> Deletions and Mutations in Lethal Cerebral Vasculopathy

    Get PDF
    International audienceRare lethal disease gene identification remains a challenging issue, but it is amenable to new techniques in high-throughput sequencing (HTS). Cerebral proliferative glomeruloid vasculopathy (PGV), or Fowler syndrome, is a severe autosomal recessive disorder of brain angiogenesis, resulting in abnormally thickened and aberrant perforating vessels leading to hydranencephaly. In 3 multiplex consanguineous families, genome-wide SNP analysis identified a locus of 14 Mb on chromosome 14. In addition, 280 consecutive SNPs were identical in two Turkish families unknown to be related, suggesting a founder mutation reducing the interval to 4,1Mb. To identify the causative gene, we then specifically enriched for this region with sequence capture and performed HTS in a proband of 7 families. Due to technical constraints related to the disease, the average coverage was only 7X. Nonetheless, iterative bioinformatic analyses of the sequence data identified mutations and a large deletion in the FLVCR2 gene, encoding a twelve transmembrane domain-containing putative transporter. A striking absence of alpha-smooth muscle actin immunostaining in abnormal vessels in fetal PGV brains, suggests a deficit in pericytes, cells essential for capillary stabilisation and remodelling during brain angiogenesis. This is the first lethal disease-causing gene to be identified by comprehensive HTS of an entire linkage interval
    corecore