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Background: Psychomotor delay, epilepsy and dysmorphic features are clinical signs
which are described in multiple syndromes due to chromosomal imbalances or
mutations involving key genes implicated in the stages of Early Embryonic
Development. In this context, we report a 10 years old Tunisian patient with these
three signs. Our objective is to determine the cause of developmental, behavioral
and facial abnormalities in this patient.

Methods: We used banding cytogenetics (karyotype) and Array Comparative
Genomic Hybridization (Array CGH) to this purpose.

Results: The karyotype was in favor of a derivative of chromosome 7 in the patient
and Array CGH analysis revealed a loss of genetic material in 7p22.3-p22.1 (4,56 Mb)
with a gain at 8q24.23-q24 (9.20 Mb) resulting from maternal 7/8 reciprocal
translocation. An in silico analysis of the unbalanced region was carried out and
showed that the 7p22.3-p22.1 deletion contains eight genes. Among them, BRAT1
gene, previously described in several neurodevelopmental diseases, may be a
candidate gene which absence could be correlated to the patient’s phenotype.
However, the 8q24.23-q24 duplication could be involved in the phenotype of this
patient.

Conclusion: In this study, we report for the first time a 7p deletion/8q duplication in a
patient with psychomoteur delay, epilepsy and facial dysmorphism. Our study
showed that Array CGH still useful for delivering a conclusive genetic diagnosis
for patients having neurodevelopmental abnormalities in the era of next-generation
sequencing.

KEYWORDS

Psychomotor delay, epilepsy, facial dysmorphism, array CGH, deletion/duplication, BRAT1
gene

OPEN ACCESS

EDITED BY

Ahmed Rebai,
Centre of Biotechnology of Sfax, Tunisia

REVIEWED BY

Cyrine Abid,
University of Sfax, Tunisia
Moncef Benkhalifa,
University of Picardie Jules Verne, France

*CORRESPONDENCE

Amel Haj Khelil,
Amel.HK@fsm.rnu.tn

SPECIALTY SECTION

This article was submitted to Genetics of
Common and Rare Diseases,
a section of the journal
Frontiers in Genetics

RECEIVED 04 October 2022
ACCEPTED 20 December 2022
PUBLISHED 09 January 2023

CITATION

Touhami R, Foddha H, Alix E, Jalloul A,
Mougou-Zerelli S, Saad A, Sanlaville D and
Haj Khelil A (2023), Case report:
7p22.3 deletion and 8q24.3 duplication in a
patient with epilepsy and psychomotor
delay—Does both possibly act tomodulate
a candidate gene region for the patient’s
phenotype?
Front. Genet. 13:1061539.
doi: 10.3389/fgene.2022.1061539

COPYRIGHT

© 2023 Touhami, Foddha, Alix, Jalloul,
Mougou-Zerelli, Saad, Sanlaville and Haj
Khelil. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Case Report
PUBLISHED 09 January 2023
DOI 10.3389/fgene.2022.1061539

https://www.frontiersin.org/articles/10.3389/fgene.2022.1061539/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1061539/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1061539/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1061539/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1061539/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1061539/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1061539&domain=pdf&date_stamp=2023-01-09
mailto:Amel.HK@fsm.rnu.tn
mailto:Amel.HK@fsm.rnu.tn
https://doi.org/10.3389/fgene.2022.1061539
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1061539


Introduction

Neurodevelopmental disorder with psychomotor delay, whether
or not associated with intellectual disability or dysmorphism,
show a complex etiology. Some of them are due to single gene
mutations under autosomal dominant (Joshua et al., 2016),
recessive (Rossi et al., 2017) or X-linked (Brand et al., 2021)
genetic transmission. Others are syndromic and most often
involve chromosomal aberrations in number or structure.
Copy number variations (CNV) present important source of
genomic variation in the general population, but are also well-
known causes of many neurodevelopmental disorders (Shoukier
et al., 2013) and could deregulate gene function via several
different mechanism.

Among the reported patients with epilepsy and intellectual
disability, about 6% have chromosomal abnormalities and to date
more than 400 different chromosomal imbalances have been
associated with seizures consisting in either deletions or
duplications (Singh et al., 2020).

Micro-deletions and duplications in certain chromosomes have
been described in neurodegenerative diseases. The development of
molecular cytogenetics like FISH (Fluorescence in situ hybridization)
and Array CGH Comparative Genome Hybridization (Vissers et al.,
2003) have made it possible to tackle the diagnostic difficulties for this
type of diseases. In vitro and in vivo functional tests based on knockout
or site-directed mutagenesis methods allow confirmation of the
involvement of deleted genes in the pathology (Alberts et al., 2002).

In this context, we report the case of a patient with psychomotor
developmental delay, status epilepticus and facial dysmorphism for
whom we found a 4.56 Mb deletion and 9.20 Mb duplication on
chromosomes 7 and 8 respectively.

Patient information

• De-identified patient specific information.

The study concerns a 10 years boy patient presented at the clinical
exploration, in the Cytogenetic consultation at Farhat Hached
Hospital of Sousse.

Written informed consent to participate to the study and to
publish the results was obtained from the patient’s parents.

• Primary concerns and symptoms of the patient.

The patient presented a psychomotor developmental delay, status
epilepticus and facial dysmorphism.

• Medical, family, and psychosocial history including relevant
genetic information.

Medical information’s: 1) psychomotor delay (walking at the age
of 2 years, holding the head at 8 months; sitting position at 1 year), 2)
status epilepticus (all four limbs hypertonia with revulsion of the
eyeballs) starting at 3 years of age, tonic-clonic epilepsy at the age of
3 years with revulsion of the eyeballs and fever at 38.5°C, 3) facial
dysmorphism.

Family and psychosocial history: the patient was born from
consanguineous parents, by Cesarean delivery without perinatal

pain and childbirth complication. No family member shows the
patient’s signs.

• Relevant past interventions and their outcomes.

On finding epilepsy, the patient was put on Depakine at 3 years,
stopped by themother after 6 months, what spawned the recurrence of
tonic-clonic seizures at the age of 4.5 years. Finally, he was put back on
Depakine without recurrence of seizures.

Clinical findings

At 10 years, the patient presents a delay of language relating to the
two sides expressive and receptive, a reflex quadripyramidal
syndrome, a dysmorphic syndrome.

Timeline

Relevant data from the episode of care are showcased in Table 1.

Diagnostic assessment

Diagnostic methods
Physical Examination (PE): weight 16 Kg, height 110 cm, cranial

circumference: 49 cm, presents a good contact. Examination of facial
dysmorphism showed broad forehead, facial clefts, wide nose base,
hypertelorism, slits oblique palpebrals below and outside, short philtrum.

Magnetic Resonance Imaging (MRI): bilateral and symmetrical
T2 hypersignal involving the parieto-occipital and bilateral frontal
periventricular white matter as well as the two semi-oval centers
respecting the gray matter in places and affecting the U-shaped fibers
in places, evoking leukodystrophy.

Electro-encephalogram (EEG): poor organization of waking
and sleeping EEG activity with absence of paroxysmal
abnormalities.

TABLE 1 Relevant data from the episode of care.

Psychomotor development Age

Headwear 8 months

Sitting position 1 year

Walk 2 years

Language Absent

Progression of the disease

Status epilepticus with 38.5 °C fever 3 years

Recurrence of tonic-clonic epilepsy 4.5 years

Treatment

Depakine 3 years

Stop Depakine 3,5 years

Put back on Depakine 4,5 years
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Sleep EEG: paroxysmal generalized interictal abnormality.
Electroneuromyogram (ENMG): without anomaly.
Bit error ratio (BER): Normal, hearing threshold at 30 dB on both sides.
Eye examination: normal.
Biological balance: normal.

• Diagnostic challenges.

Search for genetic abnormalities of a possible syndromic
leukodystrophy.

• Prognostic characteristics

Not applicable.

• Diagnosis (including other diagnoses considered).

Syndromic leukodystrophy was suggested given the facial
dysmorphism. This suggestion has to be confirmed by genetic
explorations which began by banding cytogenetics followed by
molecular cytogenetic techniques.

FIGURE 1
Banding cytogenetics of the patient in favor of a derivative of chromosome 7 (arrow).

FIGURE 2
Banding cytogenetics of the mother showing a karyotype in favor of 7/8 reciprocal translocation (arroaws).
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Banding cytogenetics
Using R banding, it appears normal (46, XY) but it could present a

derivative of chromosome 7 (Figure 1) which remains to be confirmed
by more efficient methods.

The cytogenetic exploration of the parents showed a normal
karyotype for the father and a reciprocal translocation between
chromosomes 7 and 8 in the mother (Figure 2), which karyotype
formula is: 46,XX.t (7; 8) (p22.3-p22.1; q24.23-q24.3). The patient was
born from an adjacent 1 maternal gamete carrying a normal
chromosome 8 and a derivative of chromosome 7.

Molecular cytogenetics
Method

An Array CGH using Agilent plateform with 4 × 180K resolution
was performed for this patient in the Cytogenetic Service of CHU of
Lyon, France. The 180k slides were scannned on agilent DNAmicroarray
scanner and images were extracted with feature extraction software
12.0.1.1. Data analysis was carried out with cytogenomics v3.0.3.3.
Data interpretation analysis used workbench v3.4.2.7.

Results
Data analyses of the Array CGH confirmed the karyotype

result: Partial deletion of 7p chromosome and partial
duplication of 8q chromosome were observed (Figure 3).
According to the new ISCN 2020 (International System for
Human Cytogenomic Nomenclature) changed in 2016 (Liehr,
2021), the formula in this patient was:

46,XY,der(7)t(7; 8)(p22.3; q24.3).arr[GRCh37] 7p22.3-
p22.1(83325_4642192)x1, 8q24.3(137078730_146280020)x3.

Discussion
The 4.56 Mb 7p22.3-p22.1 deletion

To our knowledge, this is the first report of a patient with
4.56 Mbp deletion on chromosome 7p22.3-p22.1 inherited from a
maternal reciprocal translocation.

In the literature, large genetic deletions or duplications have
been associated with Neurodevelopment disorders. Singh et al.
have described a 1.6 Mbp deletion on chromosome 3q29,
including 21 genes which deletion may increase apoptosis that

FIGURE 3
Array CGH results. (A) Deletion of 4.56 Mb in 7p22.3-p22.1 ranging from 83325bp to 4642192bp (hg19); (B) Duplication of 9.20 Mb in 8q24.23-
q24.3 ranging from 137078730bp to 146280020bp (hg19).
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disrupts cellular organization and brain morphology (Singh et al.,
2020).

In our patient, the analysis of the deleted region on chromosome
7p22.3-p22.1 using ALAMUT software showed that this 4.56 Mbp
deletion encompasses eight genes: INT1, FAM20C, LFNG, MAD1L1,
DNAAF5, BRAT1, IQCE, CARD11, and AP5Z1. Bioinformatic
functional analysis showed that of these genes, only BRAT1
(BRCA1-associated ATM activator 1) was related to the patient’s
phenotype. The BRAT1 gene enables protein binding and is involved
in numerous cellular functions such as apoptotic process, cell
migration and proliferation, cellular response to DNA damage
stimuli, cell growth and regulation of protein phosphorylation
(Aglipay et al., 2006; So and Ouchi, 2013). Recently,
BRAT1 deletion is described to disrupt the functions of Integrator
complex that processes 3′ ends of various non-coding RNAs and pre-
mRNAs. In particular, defects in BRAT1 impede proper 3′ end
processing of UsnRNAs and snoRNAs, replication-dependent
histone pre-mRNA processing, and alter the expression of protein-
coding genes (Cihlarova et al., 2022).

BRAT1 gene is described to be implicated in several diseases and
syndromes. Homozygous and compound heterozygous mutations in
the BRAT1 gene were identified in patients with Neurodevelopmental
disorder with cerebellar atrophy and with or without seizures (Saitsu et
al, 2014; Hanes et al., 2015; Mundy et al., 2016; Srivastava et al., 2016;
Mahjoub et al., 2019; Nuovo et al., 2022). Recessive homozygous and
compound heterozygous BRAT1 mutations are also described to be a
cause of epilepsy of infancy with migrating focal seizures (Scheffer
et al., 2020) and Lethal Neonatal Rigidity and Multifocal Seizure
Syndrome (Hanes et al., 2015; Celik et al., 2017; Van Ommeren
et al., 2018; Balasundaram et al., 2021; Li et al., 2021). Some
authors expanded the phenotypic spectrum of BRAT1 related
disorders by reporting on patients with various BRAT1 mutations
resulting in clinical severity that is either mild or moderate compared
to the severe phenotype seen in RMFSL (Rigidity and Multifocal
Seizure Lethal) (Mundy et al., 2015; Fernández-Jaén et al., 2016;
Srivastava et al., 2016). An intronic variant in BRAT1 creating a
cryptic splice site has been described to cause epileptic encephalopathy
without prominent rigidity (Colak et al., 2020).

Our patient exhibits, with patients described in the above cited
literature and having BRAT1 abnormalities some clinical similarities
including psychomotor developmental delay, status epilepticus,
hypertonia and facial dysmorphism. Based on these similarities, we
suggest that the absence of the entire BRAT1 gene on one of the two
7 chromosomes due to the 7p22.3-p22.1 deletion may be responsible
for the clinical features of our patient.

Phenotype/genotype correlation
The BRAT1 gene encodes the BRCA1-associated protein required

for ATM activation-1, a protein that interacts with BRCA1 and ATM
to initiate DNA repair in response to DNA damage (Balasundaram
et al., 2021). BRAT1 functions as an activator of ATM into the cell
nucleus by maintaining its phosphorylated status while also keeping
other phosphatases at bay (Low et al., 2015).

BRAT1 also acts as a regulator of cellular proliferation and
migration and is required for mitochondrial function. Disruption
of BRAT1 function in RMFSL has been proposed to cause
dysfunction in the DNA damage response pathway and impair
mitochondrial homeostasis (Van Ommeren et al., 2018). In
addition, functional studies revealed that loss of BRAT1 expression

significantly decreases cell proliferation and tumorigenecity,
remarkably lowers cell migration, and, interestingly, highly
increases glucose uptake and production of mitochondrial reactive
oxygen species (So and Ouchi, 2014). This dysfunction of DNA
repair and the disruption of mitochondrial function may be related
to the psychomotor developmental delay and facial dysmorphism
observed in our patient. When occurring in the brain, these
dysfunctions may explain the focal interictal paroxysmal
abnormalities (Mariani et al., 2011) and the leucodystrophy
leading to the status epilepticus.

However, we could not exclude the supplementary action of the
contiguous deleted genes at 7p22.3-p22.1 and the duplicated ones at
8q24.2, previously reported as associated to epilepsy.

The 9.20 Mb duplication on 8q24.23-q24.3
Duplications on several chromosomes are described in some cases of

psychomotor development. For example, a 17q21.31 microduplication,
was described in a girl with severe psychomotor developmental delay and
dysmorphic craniofacial features (Kirshhofet al, 2007), and a 12.4 Mb
duplication of 17q11.2q12 was reported in a patient with psychomotor
developmental delay and minor anomalies (Casellia et al., 2010). In
addition, a literature review described Xq13.3-q21.1 duplication in males
with syndromic intellectual disability and congenital abnormalities
(Chen et al., 2017).

The 9.20 Mb duplicated region found in our patient on
chromosome 8 (8q24.23-q24.3) (from 137078730 to
146,280,020 bp) contains numerous genes. Among them, KCNK9
gene showed mutations reported in maternally inherited Birk Barel
syndrome (Barel et al., 2008), and the TRAPPC9 gene was described in
non-syndromic familial forms of intellectual deficiency (Mir et al.,
2009). In addition, KCNQ3 gene was related to disorders including
benign familial neonatal epilepsy and benign familial infantile
epilepsy, seizure disorders that occur in children who typically have
normal psychomotor development (Miceli et al., 2014; Springer et al.,
2021) and autism (Sands et al., 2019), and GRINA gene described in
Central Nervous System Diseases (Chen et al., 2020).

Our patient doesn’t show any sign of intellectual deficiency,
supporting the hypothesis that, in this case reported, KCNK9 and
TRAPPC9 should not be implicated. However, we cannot exclude the
hypothesis of the implication of the 8q duplication in the pathogenesis
of this patient even though the 7p22.3-p22.1 deletion is more likely to
be related to the phenotype.

Therapeutic intervention

The treatment is essentially based on Depakine (200-0-200/d) with
motor and speech therapy rehabilitation.

Follow-up and outcomes

Medical treatment has prevented relapses of epileptic seizures.
Motor and speech rehabilitation gave a slight improvement.
Finally, the discovery of this chromosomal anomaly and its
association with the patient’s phenotype makes it possible to
give good genetic advice to the family considered and to plan a
prenatal diagnosis for subsequent pregnancies in the family
carrying this anomaly.
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Conclusion

We report here, using array Comparative Genomic Hybridization,
a novel deletion on 7p22.3-p22.1 in a Tunisian patient with
psychomotor developmental delay, status epilepticus and facial
dysmorphism. The loss of BRAT1 gene which is included in the
deletion may be related to the patient’s phenotype. This work
highlights the interest of array CGH to further characterize the
karyotype results for neurodegenerative and psychomotor diseases
diagnosis. The association of leukodystrophy with facial dysmorrhia
and psychomotor retardation could constitute syndromic
leukodystrophy secondary to deletion 7p. However, in our case,
further investigations should be done to confirm the BRAT1 gene
implication as genetic etiology and to get a better understanding of the
molecular and cellular mechanisms that lead to this disorder.
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