110 research outputs found

    Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine association of nine single nucleotide polymorphisms (SNPs) in ADP ribosyltransferase-1 (ADPRT1), aldo-keto reductase family 1 member B1 (AKR1B1), receptor for advanced glycation end-products (RAGE), glutamine:fructose-6-phosphate amidotransferase-2 (GFPT2), and plasminogen activator inhibitor-1 (PAI-1) genes with chronic renal insufficiency (CRI) among Asian Indians with type 2 diabetes; and to identify epistatic interactionss between genes from the present study and those from renin-angiotensin-aldosterone system (RAAS), and chemokine-cytokine, dopaminergic and oxidative stress pathways (previously investigated using the same sample set).</p> <p>Methods</p> <p>Type 2 diabetes subjects with CRI (serum creatinine ≥3.0 mg/dl) constituted the cases (n = 196), and ethnicity and age matched individuals with diabetes for a duration of ≥ 10 years, normal renal functions and normoalbuminuria recruited as controls (n = 225). Allelic and genotypic constitution of 10 polymorphisms (SNPs) from five genes namely- <it>ADPRT1</it>, <it>AKR1B1, RAGE, GFPT2 </it>and <it>PAI-1 </it>with diabetic CRI was investigated. The genetic associations were evaluated by computation of odds ratio and 95% confidence interval. Multiple logistic regression analysis was carried out to correlate various clinical parameters with genotypes, and to study epistatic interactions between SNPs in different genes.</p> <p>Results</p> <p>Single nucleotide polymorphisms -429 T>C in <it>RAGE </it>and rs7725 C>T SNP in 3' UTR in <it>GFPT2 </it>gene showed a trend towards association with diabetic CRI. Investigation using miRBase statistical tool revealed that rs7725 in <it>GFPT2 </it>was a perfect target for predicted miRNA (hsa miR-378) suggesting the presence of the variant 'T' allele may result in an upregulation of GFPT2 contributing to diabetic renal complication. Epistatic interaction between SNPs in transforming growth factor <it>TGF-β1 </it>(investigated using the same sample set and reported elsewhere) and <it>GFPT2 </it>genotype was observed.</p> <p>Conclusions</p> <p>Association of SNPs in <it>RAGE </it>and <it>GFPT2 </it>suggest that the genes involved in modulation of oxidative pathway could be major contributor to diabetic chronic renal insufficiency. In addition, GFPT2 mediated overproduction of TGF-β1 leading to endothelial expansion and thereby CRI seems likely, suggested by our observation of a significant interaction between GFPT2 with TGF-β1 genes. Further, identification of predicted miRNA targets spanning the associated SNP in <it>GFPT2 </it>implicates the rs7725 SNP in transcriptional regulation of the gene, and suggests <it>GFPT2 </it>could be a relevant target for pharmacological intervention. Larger replication studies are needed to confirm these observations.</p

    Polyol pathway and diabetic nephropathy revisited: Early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase

    Get PDF
    Aims/Introduction: The polyol pathway has long been involved in the pathogenesis of diabetic nephropathy. It remains still unclear, however, how the polyol pathway is implicated in this process. We explored the effects of the enhanced polyol pathway on renocortical tubular cells and glomeruli in experimentally-induced diabetes. Materials and Methods: Transgenic mice (Tg) overexpressing human aldose reductase were made diabetic by streptozotocin and followed for 8 weeks. Renocortical pathology, expressions of tonicity-responsive enhancer binding protein (TonEBP) and carboxymethyllysine of advanced glycation end-products, were examined. Wild-type non-transgenic mice (Wt) were also made diabetic and served as controls. Results: Diabetic Tg showed augmented expression of TonEBP in renocortical tubular cells with vacuolated degenerative changes. These structural changes were associated with pronounced deposition of carboxymethyllysine. There was a significant increase in kidney weight, glomerular size, and mesangial area in diabetic animals and there was a trend for more severe changes in these measures in diabetic transgenic mice compared with those in control diabetic mice. Treatment with aldose reductase inhibitor significantly prevented polyol accumulation, mesangial expansion and expressions of TonEBP and carboxymethyllysine in diabetic Tg, but its effects on the renal structure were equivocal in control diabetic Wt. Conclusions: Our findings suggest that tubuloglomerular change might contribute to early diabetic nephropathy under the influence of the enhanced polyol pathway.close1

    Association between erythrocyte Na+K+-ATPase activity and some blood lipids in type 1 diabetic patients from Lagos, Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Altered levels of erythrocyte Na<sup>+</sup>K<sup>+</sup>-ATPase, atherogenic and anti-atherogenic lipid metabolites have been implicated in diabetic complications but their pattern of interactions remains poorly understood.</p> <p>This study evaluated this relationship in Nigerian patients with Type 1 diabetes mellitus.</p> <p>Methods</p> <p>A total of 34 consented Type 1 diabetic patients and age -matched 27 non-diabetic controls were enrolled. Fasting plasma levels of total cholesterol, triglycerides and HDL-cholesterol were determined spectrophotometrically and LDL-cholesterol estimated using Friedewald formula. Total protein content and Na+K+-ATPase activity were also determined spectrophotometrically from ghost erythrocyte membrane prepared by osmotic lysis.</p> <p>Results</p> <p>Results indicate significant (P < 0.05) reduction in Na<sup>+</sup>K<sup>+</sup>-ATPase activity in the Type 1 diabetic patients (0.38 ± 0.08 vs. 0.59 ± 0.07 uM Pi/mgprotein/h) compared to the control but with greater reduction in the diabetic subgroup with poor glycemic control (n = 20) and in whom cases of hypercholesterolemia (8.8%), hypertriglyceridemia (2.9%) and elevated LDL-cholesterol (5.9% each) were found. Correlation analyses further revealed significant (P < 0.05) inverse correlations [r = -(0.708-0.797] between all the atherogenic lipid metabolites measured and Na<sup>+</sup>K<sup>+</sup>-ATPase in this subgroup contrary to group with good glycemic control or non-diabetic subjects in which significant (P < 0.05) Na<sup>+</sup>K<sup>+</sup>-ATPase and HDL-C association were found (r = 0.427 - 0.489). The Na<sup>+</sup>K<sup>+</sup>-ATPase from the diabetic patients also exhibited increased sensitivity to digoxin and alterations in kinetic constants Vmax and Km determined by glycemic status of the patients.</p> <p>Conclusion</p> <p>It can be concluded that poor glycemic control evokes greater reduction in erythrocyte Na<sup>+</sup>K<sup>+</sup>-ATPase activity and promote enzyme-blood atherogenic lipid relationships in Type 1 diabetic Nigerian patients.</p
    corecore