224 research outputs found

    Weights for relative motives; relation with mixed complexes of sheaves

    Get PDF
    The main goal of this paper is to define the so-called Chow weight structure for the category of Beilinson motives over any 'reasonable' base scheme SS (this is the version of Voevodsky's motives over SS defined by Cisinski and Deglise). We also study the functoriality properties of the Chow weight structure (they are very similar to the well-known functoriality of weights for mixed complexes of sheaves). As shown in a preceding paper, the Chow weight structure automatically yields an exact conservative weight complex functor (with values in Kb(Chow(S))K^b(Chow(S))). Here Chow(S)Chow(S) is the heart of the Chow weight structure; it is 'generated' by motives of regular schemes that are projective over SS. Besides, Grothendiek's group of SS-motives is isomorphic to K0(Chow(S))K_0(Chow(S)); we also define a certain 'motivic Euler characteristic' for SS-schemes. We obtain (Chow)-weight spectral sequences and filtrations for any cohomology of motives; we discuss their relation to Beilinson's 'integral part' of motivic cohomology and to weights of mixed complexes of sheaves. For the study of the latter we introduce a new formalism of relative weight structures.Comment: a few minor corrections mad

    Numerical model validation for mooring systems: Method and application for wave energy converters

    Get PDF
    PublishedArticleMooring systems are key sub-systems of wave energy devices. The design of mooring systems is challenging because overdesign of the mooring system incurs a significant cost penalty, while underdesign may lead to a premature failure. Incorrect design could also reduce the power production. It is therefore important to develop mooring systems which are specific for wave energy applications. In particular, very compliant mooring systems which allow the system to be highly dynamic are being developed. The validation of numerical models with data from physical experiments would facilitate the development of appropriate mooring solutions. This paper presents tank test results for a scale model of the buoy and mooring used at the South West Mooring Test Facility (SWMTF), an offshore facility developed to conduct long-term sea trials for wave energy device moorings. The mooring system investigated is a compliant 3 leg catenary mooring system using Nylon ropes in the water column. Preliminary static, quasi-static, decay, regular and irregular wave tests were conducted on the 1:5 scale model, using the Ifremer basin in Brest. A corresponding numerical model was developed with a time-domain mooring modelling tool, inputting hydrodynamic data from a radiation/diffraction potential modelling program. After the calibration of several hydrodynamic parameters (added mass, damping and mean drift), the numerical model demonstrated good agreement with the experiment, providing an accurate prediction of the maximum mooring loads in irregular waves. However, results show large differences with the field test results, mainly because of the anchor position. The methods and procedures presented will allow the effective validation of numerical models to enable the development of appropriate mooring systems in wave energy applications.The authors acknowledge the support of the MERiFIC (4122) project partners (Marine Energy in Far Peripheral and Island Communities, http://www.merific.eu) and of MARINET, a European Community Research Infrastructure Action under the FP7 Capacities Specific Programme (262552) (www.fp7-marinet.eu). The authors would like to acknowledge the support of the South West Regional Development Agency for its support through the PRIMaRE institution and the support towards the FabTest through the Regional Growth Fund. The authors are grateful for the valuable support of the Ifremer team: Emmanuel Mansuy, Aurélien Tancray, Christophe Maisondieu and Peter Davies. The authors also want to thank Orcina for their technical support

    Numerical model validation for mooring systems: Method and application for wave energy converters

    Get PDF
    Copyright © 2015 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Renewable Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Renewable Energy Vol. 75 (2015), DOI: 10.1016/j.renene.2014.10.063The design of wave energy mooring systems is challenging: overdesign incurs a significant cost penalty, underdesign may lead to a premature failure and incorrect design could reduce the power production. Consequently, compliant mooring systems are being developed for wave energy applications. This paper presents tank test results for a scale model of the buoy and mooring used at the South West Mooring Test Facility (SWMTF), an offshore facility developed to conduct long-term sea trials for wave energy device moorings. A compliant three leg catenary mooring system using Nylon ropes in the water column is investigated. Preliminary static, quasi-static, decay, regular and irregular wave tests were conducted on the 1:5 scale model, using the Ifremer basin in Brest. A corresponding numerical model was developed with a time-domain mooring modelling tool, inputting hydrodynamic data from a radiation/diffraction potential modelling program. After the calibration of several hydrodynamic parameters, the numerical model demonstrated good agreement with the experiment. However, numerical results show large differences with the field test results, mainly because of unknowns in the anchor position. The methods and procedures presented will allow the effective validation of numerical models to enable the development of appropriate mooring systems in wave energy applications.MERiFICMARINETPRIMaR

    Assessment of health claims in the field of bone: a view of the Group for the Respect of Ethics and Excellence in Science (GREES)

    Get PDF
    Health claims for food products in Europe are permitted if the nutrient has been shown to have a beneficial nutritional or physiological effect. This paper defines health claims related to bone health and provides guidelines for the design and the methodology of clinical studies to support claims

    CAPSULE: Language and system support for efficient state sharing in distributed stream processing systems

    Get PDF
    Data stream processing applications are often expressed as data flow graphs, composed of operators connected via streams. This structured representation provides a simple yet powerful paradigm for building large-scale, distributed, high-performance applications. However, there are many tasks that require sharing data across operators, and across operators and the runtime using a less structured mechanism than point-to-point data flows. Examples include updating control variables, sending notifications, collecting metrics, building collective models, etc. In this paper we describe CAPSULE, which fills this gap. CAPSULE is a code generation and runtime framework that offers an easy to use and highly flexible framework for developers to realize shared variables (CAPSULE term for shared state) by specifying a data structure (at the programming-language level), and a few associated configuration parameters that qualify the expected usage scenario. Besides the easy of use and flexibility, CAPSULE offers the following important benefits: (1) Custom Code Generation - CAPSULE makes use of user-specified configuration parameters and information from the runtime to generate shared variable servers that are tailored for the specific usage scenario, (2) Composability - CAPSULE supports deployment time composition of the shared variable servers to achieve desired levels of scalability, performance and fault-tolerance, and (3) Extensibility - CAPSULE provides simple interfaces for extending the CAPSULE framework with more protocols, transports, caching mechanisms, etc. We describe the motivation for CAPSULE and its design, report on its implementation status, and then present experimental results. Copyright © 2012 ACM

    Development of methods for the preparation of radiopure <sup>82</sup>Se sources for the SuperNEMO neutrinoless double-beta decay experiment

    Get PDF
    A radiochemical method for producing 82Se sources with an ultra-low level of contamination of natural radionuclides (40K, decay products of 232Th and 238U) has been developed based on cation-exchange chromatographic purification with reverse removal of impurities. It includes chromatographic separation (purification), reduction, conditioning (which includes decantation, centrifugation, washing, grinding, and drying), and 82Se foil production. The conditioning stage, during which highly dispersed elemental selenium is obtained by the reduction of purified selenious acid (H2SeO3) with sulfur dioxide (SO2) represents the crucial step in the preparation of radiopure 82Se samples. The natural selenium (600 g) was first produced in this procedure in order to refine the method. The technique developed was then used to produce 2.5 kg of radiopure enriched selenium (82Se). The produced 82Se samples were wrapped in polyethylene (12 μm thick) and radionuclides present in the sample were analyzed with the BiPo-3 detector. The radiopurity of the plastic materials (chromatographic column material and polypropylene chemical vessels), which were used at all stages, was determined by instrumental neutron activation analysis. The radiopurity of the 82Se foils was checked by measurements with the BiPo-3 spectrometer, which confirmed the high purity of the final product. The measured contamination level for 208Tl was 8-54 μBq/kg, and for 214Bi the detection limit of 600 μBq/kg has been reached.</p

    Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector

    Get PDF
    We present results from a search for neutrinoless double-β (0νββ) decay using 36.6 g of the isotope 150Nd with data corresponding to a live time of 5.25 y recorded with the NEMO-3 detector. We construct a complete background model for this isotope, including a measurement of the two-neutrino double-β decay half-life of T2ν 1=2 ¼ ½9.34 0.22ðstatÞ þ0.62 −0.60 ðsystÞ × 1018 y for the ground state transition, which represents the most precise result to date for this isotope. We perform a multivariate analysis to search for 0νββ decays in order to improve the sensitivity and, in the case of observation, disentangle the possible underlying decay mechanisms. As no evidence for 0νββ decay is observed, we derive lower limits on half-lives for several mechanisms involving physics beyond the standard model. The observed lower limit, assuming light Majorana neutrino exchange mediates the decay, is T0ν 1=2 > 2.0 × 1022 y at the 90% C.L., corresponding to an upper limit on the effective neutrino mass of hmνi < 1.6–5.3 eV
    corecore