238 research outputs found

    Перспективы поисков неантиклинальных ловушек углеводородов в терригенных отложениях девона на территории северных районов Волго-Урала

    Get PDF
    The northern regions of the Volga-Ural oil and gas province have not yet exhausted the potential in gaining in oil and gas reserves due to structural deposits. However, there is a need to search for non-anticline traps. Devonian terrigenous deposits are very promising for the detection of non-anticline hydrocarbon traps here. The typification of non-anticlinal traps was carried out. According to the typification, carried out on the basis of geological and geophysical criteria, six zones of distribution of non-anticlinal traps that are promising for the detection of industrial accumulations of hydrocarbons are identified.Северные районы Волго-Уральской нефтегазоносной провинции еще не исчерпали возможностей получения прироста запасов нефти и газа за счет структурных залежей, тем не менее назрела необходимость поисков неантиклинальных ловушек. Весьма перспективными на обнаружение здесь ловушек углеводородов неантиклинального типа являются девонские терригенные отложения. Проведена типизация неантиклинальных ловушек, развитых в пределах нефтеперспективных земель изучаемой территории. В соответствии с проведенной типизацией на основе геолого-геофизических критериев выделены шесть зон распространения неантиклинальных ловушек, перспективных на обнаружение промышленных скоплений углеводородов

    Apokamps produced by repetitive discharges in air

    Get PDF
    New experimental and computational data on apokamps produced by repetitive discharges in air, including a detailed description of the research techniques used, are presented. It has been shown that plasma bullets–streamers in apokamps at low frequencies could start not only from the bright offshoot but also directly from the discharge channel. The experimental and computational data demonstrate that the visual color of apokamp changes from blue to red as the intensity ratio of the second to the first positive nitrogen system decreases with the decreasing pressure

    On the Puzzle of Odd-Frequency Superconductivity

    Full text link
    Since the first theoretical proposal by Berezinskii, an odd-frequency superconductivity has encountered the fundamental problems on its thermodynamic stability and rigidity of a homogenous state accompanied by unphysical Meissner effect. Recently, Solenov {\it et al}. [Phys. Rev. B {\bf 79} (2009) 132502.] have asserted that the path-integral formulation gets rid of the difficulties leading to a stable homogenous phase with an ordinary Meissner effect. Here, we show that it is crucial to choose the appropriate saddle-point solution that minimizes the effective free energy, which was assumed {\it implicitly} in the work by Solenov and co-workers. We exhibit the path-integral framework for the odd-frequency superconductivity with general type of pairings, including an argument on the retarded functions via the analytic continuation to the real axis.Comment: 6 pages, in JPSJ forma

    Possible Odd-Frequency Superconductivity in Strong-Coupling Electron-Phonon Systems

    Full text link
    A possibility of the odd-frequency pairing in the strong-coupling electron-phonon systems is discussed. Using the Holstein-Hubbard model, we demonstrate that the anomalously soft Einstein mode with the frequency ωEωc\omega_{\rm E}\ll\omega_{c} (ωc\omega_{c} is the order of the renormalized bandwidth) mediates the s-wave odd-frequency triplet pairing against the ordinary even-frequency singlet pairing. It is necessary for the emergence of the odd-frequency pairing that the pairing interaction is strongly retarded as well as the strong coupling, since the pairing interaction for the odd-frequency pairing is effective only in the diagonal scattering channel, (ωn,ωn)(ωn,ωn)(\omega_{n},-\omega_{n})\to(\omega_{n'},-\omega_{n'}) with ωn=ωnωE\omega_{n'}=\omega_{n}\gtrsim \omega_{\rm E}. Namely, the odd-frequency superconductivity is realized in the opposite limit of the original BCS theory. The Ginzburg-Landau analysis in the strong-coupling region shows that the specific-heat discontinuity and the slope of the temperature dependence of the superfluid density can be quite small as compared with the BCS values, depending on the ratio of the transition temperature TcT_{c} and ωc\omega_{c}.Comment: 6 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons

    Get PDF
    © SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio

    Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics

    Get PDF
    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well

    New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels : Preliminary results in the RRR

    Get PDF
    The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70's, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its "High Priority Request List" and its report WPEC-26 that the capture cross section of 242Pu should be measured with an accuracy of at least 7-12% in the neutron energy range between 500 eV and 500 keV. This work presents a brief description of the measurement performed at n-TOF-EAR1, the data reduction process and the first ToF capture measurement on this isotope in the last 40 years, providing preliminary individual resonance parameters beyond the current energy limits in the evaluations, as well as a preliminary set of average resonance parameters
    corecore