340 research outputs found

    Quantitative Trait Loci Associated with Milling and Baking Quality in a Soft X Hard Wheat Cross

    Get PDF
    Interclass hybridization between soft and hard wheat (Triticum aestivum L.) results in new genetic combinations of potential value

    Wheat amylase/trypsin inhibitors (ATIs): occurrence, function and health aspects

    Get PDF
    Amylase/trypsin inhibitors (ATIs) are widely consumed in cereal-based foods and have been implicated in adverse reactions to wheat exposure, such as respiratory and food allergy, and intestinal responses associated with coeliac disease and non-coeliac wheat sensitivity. ATIs occur in multiple isoforms which differ in the amounts present in different types of wheat (including ancient and modern ones). Measuring ATIs and their isoforms is an analytical challenge as is their isolation for use in studies addressing their potential effects on the human body. ATI isoforms differ in their spectrum of bioactive effects in the human gastrointestinal (GI), which may include enzyme inhibition, inflammation and immune responses and of which much is not known. Similarly, although modifications during food processing (exposure to heat, moisture, salt, acid, fermentation) may affect their structure and activity as shown in vitro, it is important to relate these changes to effects that may present in the GI tract. Finally, much of our knowledge of their potential biological effects is based on studies in vitro and in animal models. Validation by human studies using processed foods as commonly consumed is warranted. We conclude that more detailed understanding of these factors may allow the effects of ATIs on human health to be better understood and when possible, to be ameliorated, for example by innovative food processing. We therefore review in short our current knowledge of these proteins, focusing on features which relate to their biological activity and identifying gaps in our knowledge and research priorities

    Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.

    Get PDF
    New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved

    Food security through translational biology between wheat and rice

    Get PDF
    Wheat and rice are the most important food crops in agriculture providing around 50% of all calories consumed in the human diet. While both are C3 species, the evolution and domestication of wheat and rice occurred in very different environments, resulting in diverse anatomical and metabolic adaptation. This review focuses on the current understanding of their adaptation in an agronomic context. The similarities and differences between wheat and rice are discussed, focusing on traits related to phenology, photosynthesis, assimilate partitioning, and lodging resistance, these being the main abiotic drivers of yield expression in most agro‐ecosystems. Currently, there are significant knowledge gaps in the major biological processes that account not only for differential adaption among cultivars within each species, but even between the two species. By addressing what is known as well as where gaps exist in a comparative context, this review aims to highlight translational research approaches that could provide insights into the genetic improvement of both crops

    Response to early generation genomic selection for yield in wheat

    Get PDF
    We investigated increasing genetic gain for grain yield using early generation genomic selection (GS). A training set of 1,334 elite wheat breeding lines tested over three field seasons was used to generate Genomic Estimated Breeding Values (GEBVs) for grain yield under irrigated conditions applying markers and three different prediction methods: (1) Genomic Best Linear Unbiased Predictor (GBLUP), (2) GBLUP with the imputation of missing genotypic data by Ridge Regression BLUP (rrGBLUP_imp), and (3) Reproducing Kernel Hilbert Space (RKHS) a.k.a. Gaussian Kernel (GK). F2 GEBVs were generated for 1,924 individuals from 38 biparental cross populations between 21 parents selected from the training set. Results showed that F2 GEBVs from the different methods were not correlated. Experiment 1 consisted of selecting F2s with the highest average GEBVs and advancing them to form genomically selected bulks and make intercross populations aiming to combine favorable alleles for yield. F4:6 lines were derived from genomically selected bulks, intercrosses, and conventional breeding methods with similar numbers from each. Results of field-testing for Experiment 1 did not find any difference in yield with genomic compared to conventional selection. Experiment 2 compared the predictive ability of the different GEBV calculation methods in F2 using a set of single plant-derived F2:4 lines from randomly selected F2 plants. Grain yield results from Experiment 2 showed a significant positive correlation between observed yields of F2:4 lines and predicted yield GEBVs of F2 single plants from GK (the predictive ability of 0.248, P < 0.001) and GBLUP (0.195, P < 0.01) but no correlation with rrGBLUP_imp. Results demonstrate the potential for the application of GS in early generations of wheat breeding and the importance of using the appropriate statistical model for GEBV calculation, which may not be the same as the best model for inbreds

    Chromosome Bin Map of Expressed Sequence Tags in Homoeologous Group 1 of Hexaploid Wheat and Homoeology With Rice and Arabidopsis

    Full text link
    A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E ≤ e(−10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses

    New DArT markers for oat provide enhanced map coverage and global germplasm characterization

    Get PDF
    BACKGROUND: Genomic discovery in oat and its application to oat improvement have been hindered by a lack of genetic markers common to different genetic maps, and by the difficulty of conducting whole-genome analysis using high-throughput markers. This study was intended to develop, characterize, and apply a large set of oat genetic markers based on Diversity Array Technology (DArT). RESULTS: Approximately 19,000 genomic clones were isolated from complexity-reduced genomic representations of pooled DNA samples from 60 oat varieties of global origin. These were screened on three discovery arrays, with more than 2000 polymorphic markers being identified for use in this study, and approximately 2700 potentially polymorphic markers being identified for use in future studies. DNA sequence was obtained for 2573 clones and assembled into a non-redundant set of 1770 contigs and singletons. Of these, 705 showed highly significant (Expectation < 10E-10) BLAST similarity to gene sequences in public databases. Based on marker scores in 80 recombinant inbred lines, 1010 new DArT markers were used to saturate and improve the 'Kanota' × 'Ogle' genetic map. DArT markers provided map coverage approximately equivalent to existing markers. After binning markers from similar clones, as well as those with 99% scoring similarity, a set of 1295 non-redundant markers was used to analyze genetic diversity in 182 accessions of cultivated oat of worldwide origin. Results of this analysis confirmed that major clusters of oat diversity are related to spring vs. winter type, and to the presence of major breeding programs within geographical regions. Secondary clusters revealed groups that were often related to known pedigree structure. CONCLUSION: These markers will provide a solid basis for future efforts in genomic discovery, comparative mapping, and the generation of an oat consensus map. They will also provide new opportunities for directed breeding of superior oat varieties, and guidance in the maintenance of oat genetic diversity

    Cross-amplification of EST-derived markers among 16 grass species

    Get PDF
    The availability of a large number of expressed sequence tags (ESTs) has facilitated the development of molecular markers in members of the grass family. As these markers are derived from coding sequences, cross-species amplification and transferability is higher than for markers designed from genomic DNA sequences. In this study, 919 EST-based primers developed from seven grass species were assessed for their amplification across a diverse panel of 16 grass species including cereal, turf and forage crops. Out of the 919 primers tested, 89 successfully amplified DNA from one or more species and 340 primers generated PCR amplicons from at least half of the species in the panel. Only 5.2% of the primers tested produced clear amplicons in all 16 species. The majority of the primers (66.9%) were developed from tall fescue and rice and these two species showed amplification rate of 41.6% and 19.0% across the panel, respectively. The highest amplification rate was found for conserved-intron scanning primers (CISP) developed from pearl millet (91%) and sorghum (75%) EST sequences that aligned to rice sequences. The primers with successful amplification identified in this study showed promise in other grass species as demonstrated in differentiating a set of 13 clones of reed canary grass, a species for which very little genomic research has been done. Sequences from the amplified PCR fragments indicated the potential for the transferable CISP markers for comparative mapping purposes. These primer sets can be immediately used for within and across species mapping and will be especially useful for minor grass species with few or no available molecular markers

    Population Genomics Related to Adaptation in Elite Oat Germplasm

    Get PDF
    Six hundred thirty five oat ( L.) lines and 4561 single-nucleotide polymorphism (SNP) loci were used to evaluate population structure, linkage disequilibrium (LD), and genotype–phenotype association with heading date. The first five principal components (PCs) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 25 PCs nor the cross-validation errors from = 1 to 20 model-based analyses suggested a structured population. However, the PC and = 2 model-based analyses supported clustering of lines on spring oat vs. southern United States origin, accounting for 16% of genetic variation ( < 0.0001). Single-locus -statistic () in the highest 1% of the distribution suggested linkage groups that may be differentiated between the two population subgroups. Population structure and kinship-corrected LD of = 0.10 was observed at an average pairwise distance of 0.44 cM (0.71 and 2.64 cM within spring and southern oat, respectively). On most linkage groups LD decay was slower within southern lines than within the spring lines. A notable exception was found on linkage group Mrg28, where LD decay was substantially slower in the spring subpopulation. It is speculated that this may be caused by a heterogeneous translocation event on this chromosome. Association with heading date was most consistent across location-years on linkage groups Mrg02, Mrg12, Mrg13, and Mrg24
    corecore