57 research outputs found

    TGFÎČ (transforming growth factor-ÎČ) blockade induces a human-like disease in a nondissecting mouse model of abdominal aortic aneurysm

    Get PDF
    Objective-Current experimental models of abdominal aortic aneurysm (AAA) do not accurately reproduce the major features of human AAA. We hypothesized that blockade of TGF beta (transforming growth factor-beta) activity-a guardian of vascular integrity and immune homeostasis-would impair vascular healing in models of nondissecting AAA and would lead to sustained aneurysmal growth until rupture. Approach and Results-Here, we test this hypothesis in the elastase-induced AAA model in mice. We analyze AAA development and progression using ultrasound in vivo, synchrotron-based ultrahigh resolution imaging ex vivo, and a combination of biological, histological, and flow cytometry-based cellular and molecular approaches in vitro. Systemic blockade of TGF beta using a monoclonal antibody induces a transition from a self-contained aortic dilatation to a model of sustained aneurysmal growth, associated with the formation of an intraluminal thrombus. AAA growth is associated with wall disruption but no medial dissection and culminates in fatal transmural aortic wall rupture. TGF beta blockade enhances leukocyte infiltration both in the aortic wall and the intraluminal thrombus and aggravates extracellular matrix degradation. Early blockade of IL-1 beta or monocyte-dependent responses substantially limits AAA severity. However, blockade of IL-1 beta after disease initiation has no effect on AAA progression to rupture. Conclusions-Endogenous TGF beta activity is required for the healing of AAA. TGF beta blockade may be harnessed to generate new models of AAA with better relevance to the human disease. We expect that the new models will improve our understanding of the pathophysiology of AAA and will be useful in the identification of new therapeutic targets

    Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet.

    Get PDF
    AIMS: Abdominal aortic aneurysm (AAA) is an age-associated disease characterized by chronic inflammation, vascular cell apoptosis and metalloproteinase-mediated extracellular matrix degradation. Despite considerable progress in identifying targets involved in these processes, therapeutic approaches aiming to reduce aneurysm growth and rupture are still scarce. Indoleamine 2-3 dioxygenase 1 (IDO) is the first and rate-limiting enzyme involved in the conversion of tryptophan (Trp) into kynurenine (Kyn) pathway. In this study, we investigated the role of IDO in two different models of AAA in mice. METHODS AND RESULTS: Mice with deficiencies in both low density receptor-deficient (Ldlr-/-) and IDO (Ldlr-/-Ido1-/-) were generated by cross-breeding Ido1-/- mice with Ldlr-/-mice. To induce aneurysm, these mice were infused with angiotensin II (Ang II) (1000 ng/min/kg) and fed with high fat diet (HFD) during 28 days. AAAs were present in almost all Ldlr-/- infused with AngII, but only in 50% of Ldlr-/-Ido1-/- mice. Immunohistochemistry at an early time point (day 7) revealed no changes in macrophage and T lymphocyte infiltration within the vessel wall, but showed reduced apoptosis, as assessed by TUNEL assay, and increased α-actin staining within the media of Ldlr-/-Ido1-/- mice, suggesting enhanced survival of vascular smooth muscle cells (VSMCs) in the absence of IDO. In another model of elastase-induced AAA in C57Bl/6 mice, IDO deficiency had no effect on aneurysm formation. CONCLUSION: Our study showed that the knockout of IDO prevented VSMC apoptosis in AngII -treated Ldlr-/- mice fed with HFD, suggesting a detrimental role of IDO in AAA formation and thus would be an important target for the treatment of aneurysm

    Vascular Smooth Muscle Cell Plasticity and Autophagy in Dissecting Aortic Aneurysms.

    Get PDF
    Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II-induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5. We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions- VSMCs undergo clonal expansion and phenotypic switching in Ang II-induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress-dependent inflammation with important consequences for aortic wall homeostasis and repair

    The Dendritic Cell Receptor DNGR-1 Promotes the Development of Atherosclerosis in Mice.

    Get PDF
    RATIONALE: Necrotic core formation during the development of atherosclerosis is associated with a chronic inflammatory response and promotes accelerated plaque development and instability. However, the molecular links between necrosis and the development of atherosclerosis are not completely understood. Clec9a (C-type lectin receptor) or DNGR-1 (dendritic cell NK lectin group receptor-1) is preferentially expressed by the CD8α+ subset of dendritic cells (CD8α+ DCs) and is involved in sensing necrotic cells. We hypothesized that sensing of necrotic cells by DNGR-1 plays a determinant role in the inflammatory response of atherosclerosis. OBJECTIVE: We sought to address the impact of total, bone marrow-restricted, or CD8α+ DC-restricted deletion of DNGR-1 on atherosclerosis development. METHODS AND RESULTS: We show that total absence of DNGR-1 in Apoe (apolipoprotein e)-deficient mice (Apoe-/-) and bone marrow-restricted deletion of DNGR-1 in Ldlr (low-density lipoprotein receptor)-deficient mice (Ldlr-/-) significantly reduce inflammatory cell content within arterial plaques and limit atherosclerosis development in a context of moderate hypercholesterolemia. This is associated with a significant increase of the expression of interleukin-10 (IL-10). The atheroprotective effect of DNGR-1 deletion is completely abrogated in the absence of bone marrow-derived IL-10. Furthermore, a specific deletion of DNGR-1 in CD8α+ DCs significantly increases IL-10 expression, reduces macrophage and T-cell contents within the lesions, and limits the development of atherosclerosis. CONCLUSIONS: Our results unravel a new role of DNGR-1 in regulating vascular inflammation and atherosclerosis and potentially identify a new target for disease modulation

    Increased atherosclerotic plaque in AOC3 knock-out in ApoE-/- mice and characterization of AOC3 in atherosclerotic human coronary arteries

    Get PDF
    IntroductionAmine oxidase copper containing 3 (AOC3) displays adhesion between leukocytes and endothelial cells and enzymatic functions. Given its controversial role in atherogenesis, we proposed to investigate the involvement of AOC3 in the formation of atherosclerotic plaques in ApoE(-/-)AOC3(-/-) mice and human coronary arteries. MethodsLesions, contractile markers, and AOC3 were studied in aortic tissues from 15- and 25-week-old mice and different stages of human coronary atherosclerotic arteries by immunohistochemistry (IHC) and/or western blot. Human VSMCs, treated or not with LJP1586, an AOC3 inhibitor, were used to measure differentiation markers by qPCR. AOC3 co-localization with specific cell markers was studied by using confocal microscopy in mice and human samples. ResultsAt 15 weeks old, the absence of AOC3 was associated with increased lesion size, alpha-SMA, and CD3 staining in the plaque independently of a cholesterol modification. At 25 weeks old, advanced plaques were larger with equivalent staining for alpha-SMA while CD3 increased in the media from ApoE(-/-)AOC3(-/-) mice. At both ages, the macrophage content of the lesion was not modified. Contractile markers decreased whereas MCP-1 appeared augmented only in the 15-week-old ApoE(-/-)AOC3. AOC3 is mainly expressed by mice and human VSMC is slightly expressed by endothelium but not by macrophages. ConclusionAOC3 knock-out increased atherosclerotic plaques at an early stage related to a VSMC dedifferentiation associated with a higher T cells recruitment in plaques explained by the MCP-1 augmentation. This suggests that AOC3 may have an important role in atherosclerosis independent of its canonical inflammatory effect. The dual role of AOC3 impacts therapeutic strategies using pharmacological regulators of SSAO activity

    Genetic and Pharmacological Inhibition of TREM-1 Limits the Development of Experimental Atherosclerosis.

    Get PDF
    BACKGROUND: Innate immune responses activated through myeloid cells contribute to the initiation, progression, and complications of atherosclerosis in experimental models. However, the critical upstream pathways that link innate immune activation to foam cell formation are still poorly identified. OBJECTIVES: This study sought to investigate the hypothesis that activation of the triggering receptor expressed on myeloid cells (TREM-1) plays a determinant role in macrophage atherogenic responses. METHODS: After genetically invalidating Trem-1 in chimeric Ldlr-/-Trem-1-/- mice and double knockout ApoE-/-Trem-1-/- mice, we pharmacologically inhibited Trem-1 using LR12 peptide. RESULTS: Ldlr-/- mice reconstituted with bone marrow deficient for Trem-1 (Trem-1-/-) showed a strong reduction of atherosclerotic plaque size in both the aortic sinus and the thoracoabdominal aorta, and were less inflammatory compared to plaques of Trem-1+/+ chimeric mice. Genetic invalidation of Trem-1 led to alteration of monocyte recruitment into atherosclerotic lesions and inhibited toll-like receptor 4 (TLR 4)-initiated proinflammatory macrophage responses. We identified a critical role for Trem-1 in the upregulation of cluster of differentiation 36 (CD36), thereby promoting the formation of inflammatory foam cells. Genetic invalidation of Trem-1 in ApoE-/-/Trem-1-/- mice or pharmacological blockade of Trem-1 in ApoE-/- mice using LR-12 peptide also significantly reduced the development of atherosclerosis throughout the vascular tree, and lessened plaque inflammation. TREM-1 was expressed in human atherosclerotic lesions, mainly in lipid-rich areas with significantly higher levels of expression in atheromatous than in fibrous plaques. CONCLUSIONS: We identified TREM-1 as a major upstream proatherogenic receptor. We propose that TREM-1 activation orchestrates monocyte/macrophage proinflammatory responses and foam cell formation through coordinated and combined activation of CD36 and TLR4. Blockade of TREM-1 signaling may constitute an attractive novel and double-hit approach for the treatment of atherosclerosis

    B cell depletion reduces the development of atherosclerosis in mice

    Get PDF
    B cell depletion significantly reduces the burden of several immune-mediated diseases. However, B cell activation has been until now associated with a protection against atherosclerosis, suggesting that B cell–depleting therapies would enhance cardiovascular risk. We unexpectedly show that mature B cell depletion using a CD20-specific monoclonal antibody induces a significant reduction of atherosclerosis in various mouse models of the disease. This treatment preserves the production of natural and potentially protective anti–oxidized low-density lipoprotein (oxLDL) IgM autoantibodies over IgG type anti-oxLDL antibodies, and markedly reduces pathogenic T cell activation. B cell depletion diminished T cell–derived IFN-γ secretion and enhanced production of IL-17; neutralization of the latter abrogated CD20 antibody–mediated atheroprotection. These results challenge the current paradigm that B cell activation plays an overall protective role in atherogenesis and identify new antiatherogenic strategies based on B cell modulation

    Type-2 innate lymphoid cells control the development of atherosclerosis in mice.

    Get PDF
    Type-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence on the development of atherosclerosis has not been explored. Here, we show that ILC2 are present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like phenotype atypical of adipose resident ILC2. High fat feeding alters both the number of ILC2 and their type II cytokine production. Selective genetic ablation of ILC2 in Ldlr-/- mice accelerates the development of atherosclerosis, which is prevented by reconstitution with wild type but not Il5-/- or Il13-/- ILC2. We conclude that ILC2 represent a major innate cell source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be altered by high fat diet

    Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis

    Get PDF
    Atherosclerosis is an inflammatory vascular disease responsible for the first cause of mortality worldwide. Recent studies have clearly highlighted the critical role of the immunoinflammatory balance in the modulation of disease development and progression. However, the immunoregulatory pathways that control atherosclerosis remain largely unknown. We show that loss of suppressor of cytokine signaling (SOCS) 3 in T cells increases both interleukin (IL)-17 and IL-10 production, induces an antiinflammatory macrophage phenotype, and leads to unexpected IL-17–dependent reduction in lesion development and vascular inflammation. In vivo administration of IL-17 reduces endothelial vascular cell adhesion molecule–1 expression and vascular T cell infiltration, and significantly limits atherosclerotic lesion development. In contrast, overexpression of SOCS3 in T cells reduces IL-17 and accelerates atherosclerosis. We also show that in human lesions, increased levels of signal transducer and activator of transcription (STAT) 3 phosphorylation and IL-17 are associated with a stable plaque phenotype. These results identify novel SOCS3-controlled IL-17 regulatory pathways in atherosclerosis and may have important implications for the understanding of the increased susceptibility to vascular inflammation in patients with dominant-negative STAT3 mutations and defective Th17 cell differentiation

    Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health.

    Get PDF
    The association between altered gut microbiota, intestinal permeability, inflammation and cardiometabolic diseases is becoming increasingly clear but remains poorly understood1,2. Indoleamine 2,3-dioxygenase is an enzyme induced in many types of immune cells, including macrophages in response to inflammatory stimuli, and catalyzes the degradation of tryptophan along the kynurenine pathway. Indoleamine 2,3-dioxygenase activity is better known for its suppression of effector T cell immunity and its activation of regulatory T cells3,4. However, high indoleamine 2,3-dioxygenase activity predicts worse cardiovascular outcome5-9 and may promote atherosclerosis and vascular inflammation6, suggesting a more complex role in chronic inflammatory settings. Indoleamine 2,3-dioxygenase activity is also increased in obesity10-13, yet its role in metabolic disease is still unexplored. Here, we show that obesity is associated with an increase of intestinal indoleamine 2,3-dioxygenase activity, which shifts tryptophan metabolism from indole derivative and interleukin-22 production toward kynurenine production. Indoleamine 2,3-dioxygenase deletion or inhibition improves insulin sensitivity, preserves the gut mucosal barrier, decreases endotoxemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. These beneficial effects are due to rewiring of tryptophan metabolism toward a microbiota-dependent production of interleukin-22 and are abrogated after treatment with a neutralizing anti-interleukin-22 antibody. In summary, we identify an unexpected function of indoleamine 2,3-dioxygenase in the fine tuning of intestinal tryptophan metabolism with major consequences on microbiota-dependent control of metabolic disease, which suggests indoleamine 2,3-dioxygenase as a potential therapeutic target
    • 

    corecore