1,723 research outputs found

    Improving Assessment of Drug Safety Through Proteomics: Early Detection and Mechanistic Characterization of the Unforeseen Harmful Effects of Torcetrapib.

    Get PDF
    BackgroundEarly detection of adverse effects of novel therapies and understanding of their mechanisms could improve the safety and efficiency of drug development. We have retrospectively applied large-scale proteomics to blood samples from ILLUMINATE (Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events), a trial of torcetrapib (a cholesterol ester transfer protein inhibitor), that involved 15 067 participants at high cardiovascular risk. ILLUMINATE was terminated at a median of 550 days because of significant absolute increases of 1.2% in cardiovascular events and 0.4% in mortality with torcetrapib. The aims of our analysis were to determine whether a proteomic analysis might reveal biological mechanisms responsible for these harmful effects and whether harmful effects of torcetrapib could have been detected early in the ILLUMINATE trial with proteomics.MethodsA nested case-control analysis of paired plasma samples at baseline and at 3 months was performed in 249 participants assigned to torcetrapib plus atorvastatin and 223 participants assigned to atorvastatin only. Within each treatment arm, cases with events were matched to controls 1:1. Main outcomes were a survey of 1129 proteins for discovery of biological pathways altered by torcetrapib and a 9-protein risk score validated to predict myocardial infarction, stroke, heart failure, or death.ResultsPlasma concentrations of 200 proteins changed significantly with torcetrapib. Their pathway analysis revealed unexpected and widespread changes in immune and inflammatory functions, as well as changes in endocrine systems, including in aldosterone function and glycemic control. At baseline, 9-protein risk scores were similar in the 2 treatment arms and higher in participants with subsequent events. At 3 months, the absolute 9-protein derived risk increased in the torcetrapib plus atorvastatin arm compared with the atorvastatin-only arm by 1.08% (P=0.0004). Thirty-seven proteins changed in the direction of increased risk of 49 proteins previously associated with cardiovascular and mortality risk.ConclusionsHeretofore unknown effects of torcetrapib were revealed in immune and inflammatory functions. A protein-based risk score predicted harm from torcetrapib within just 3 months. A protein-based risk assessment embedded within a large proteomic survey may prove to be useful in the evaluation of therapies to prevent harm to patients.Clinical trial registrationURL: https://www.clinicaltrials.gov. Unique identifier: NCT00134264

    AMPA/kainate glutamate receptor antagonists prevent posttraumatic osteoarthritis

    Get PDF
    Musculoskeletal disorders represent the 3rd greatest burden on health in the developed world. Osteoarthritis is the single greatest cause of chronic pain, has no cure, and affects 8.5 and 27 million in the UK and US respectively. Osteoarthritis commonly occurs after joint injury, particularly affecting younger patients. Painful joints are often treated with injections of steroid or hyaluronic acid (HA), but treatments to prevent subsequent joint degeneration remain elusive. In animals, joint injury increases glutamate release into the joint, acting on nerves to cause pain, and joint tissues to cause inflammation and degeneration. This study investigated synovial fluid glutamate concentrations and glutamate receptor (GluR) expression in injured human joints and compared efficacy of GluR antagonists with current treatments in a mouse model of injury-induced osteoarthritis (ACL rupture). GluRs were expressed in ligament and meniscus after knee injury and synovial fluid glutamate concentrations ranged from 19–129 µM. Intra-articular injection of NBQX (GluR antagonist), administered at the time of injury, substantially reduced swelling and degeneration in the mouse ACL rupture model. HA had no effect and depo-medrone reduced swelling for 1 day, but increased degeneration by 50%. Intra-articular administration of NBQX was both symptom and disease modifying to a greater extent than current treatments. There is an opportunity for repurposing related drugs, developed for CNS disorders, with proven safety in man, to prevent injury-induced osteoarthritis. This could quickly reduce the substantial burden associated with osteoarthritis

    Structures of monomeric and oligomeric forms of the Toxoplasma gondiiperforin-like protein 1

    Get PDF
    Toxoplasma and Plasmodium are the parasitic agents of toxoplasmosis and malaria, respectively, and use perforin-like proteins (PLPs) to invade host organisms and complete their life cycles. The Toxoplasma gondii PLP1 (TgPLP1) is required for efficient exit from parasitophorous vacuoles in which proliferation occurs. We report structures of the membrane attack complex/perforin (MACPF) and Apicomplexan PLP C-terminal β-pleated sheet (APCβ) domains of TgPLP1. The MACPF domain forms hexameric assemblies, with ring and helix geometries, and the APCβ domain has a novel β-prism fold joined to the MACPF domain by a short linker. Molecular dynamics simulations suggest that the helical MACPF oligomer preserves a biologically important interface, whereas the APCβ domain binds preferentially through a hydrophobic loop to membrane phosphatidylethanolamine, enhanced by the additional presence of inositol phosphate lipids. This mode of membrane binding is supported by site-directed mutagenesis data from a liposome-based assay. Together, these structural and biophysical findings provide insights into the molecular mechanism of membrane targeting by TgPLP1

    Risk of pneumococcal bacteremia in Kenyan children with glucose-6-phosphate dehydrogenase deficiency

    Get PDF
    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency state in humans. The clinical phenotype is variable and includes asymptomatic individuals, episodic hemolysis induced by oxidative stress, and chronic hemolysis. G6PD deficiency is common in malaria-endemic regions, an observation hypothesized to be due to balancing selection at the G6PD locus driven by malaria. G6PD deficiency increases risk of severe malarial anemia, a key determinant of invasive bacterial disease in malaria-endemic settings. The pneumococcus is a leading cause of invasive bacterial infection and death in African children. The effect of G6PD deficiency on risk of pneumococcal disease is undefined. We hypothesized that G6PD deficiency increases pneumococcal disease risk and that this effect is dependent upon malaria. Methods We performed a genetic case-control study of pneumococcal bacteremia in Kenyan children stratified across a period of falling malaria transmission between 1998 and 2010. Results Four hundred twenty-nine Kenyan children with pneumococcal bacteremia and 2677 control children were included in the study. Among control children, G6PD deficiency, secondary to the rs1050828 G>A mutation, was common, with 11.2% (n = 301 of 2677) being hemi- or homozygotes and 33.3% (n = 442 of 1329) of girls being heterozygotes. We found that G6PD deficiency increased the risk of pneumococcal bacteremia, but only during a period of high malaria transmission (P = 0.014; OR 2.33, 95% CI 1.19-4.57). We estimate that the population attributable fraction of G6PD deficiency on risk of pneumococcal bacteremia in areas under high malaria transmission is 0.129. Conclusions Our data demonstrate that G6PD deficiency increases risk of pneumococcal bacteremia in a manner dependent on malaria. At the population level, the impact of G6PD deficiency on invasive pneumococcal disease risk in malaria-endemic regions is substantial. Our study highlights the infection-associated morbidity and mortality conferred by G6PD deficiency in malaria-endemic settings and adds to our understanding of the potential indirect health benefits of improved malaria control.Peer reviewe

    Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case-control study and a longitudinal study.

    Get PDF
    BACKGROUND: Many investigators have suggested that malaria infection predisposes individuals to bacteraemia. We tested this hypothesis with mendelian randomisation studies of children with the malaria-protective phenotype of sickle-cell trait (HbAS). METHODS: This study was done in a defined area around Kilifi District Hospital, Kilifi, Kenya. We did a matched case-control study to identify risk factors for invasive bacterial disease, in which cases were children aged 3 months to 13 years who were admitted to hospital with bacteraemia between Sept 16, 1999, and July 31, 2002. We aimed to match two controls, by age, sex, location, and time of recruitment, for every case. We then did a longitudinal case-control study to assess the relation between HbAS and invasive bacterial disease as malaria incidence decreased. Cases were children aged 0-13 years who were admitted to hospital with bacteraemia between Jan 1, 1999, and Dec 31, 2007. Controls were born in the study area between Jan 1, 2006, and June 23, 2009. Finally, we modelled the annual incidence of bacteraemia against the community prevalence of malaria during 9 years with Poisson regression. RESULTS: In the matched case-control study, we recruited 292 cases-we recruited two controls for 236, and one for the remaining 56. Sickle-cell disease, HIV, leucocyte haemozoin pigment, and undernutrition were positively associated with bacteraemia and HbAS was strongly negatively associated with bacteraemia (odds ratio 0·36; 95% CI 0·20-0·65). In the longitudinal case-control study, we assessed data from 1454 cases and 10,749 controls. During the study period, the incidence of admission to hospital with malaria per 1000 child-years decreased from 28·5 to 3·45, with a reduction in protection afforded by HbAS against bacteraemia occurring in parallel (p=0·0008). The incidence of hospital admissions for bacteraemia per 1000 child-years also decreased from 2·59 to 1·45. The bacteraemia incidence rate ratio associated with malaria parasitaemia was 6·69 (95% CI 1·31-34·3) and, at a community parasite prevalence of 29% in 1999, 62% (8·2-91) of bacteraemia cases were attributable to malaria. INTERPRETATION: Malaria infection strongly predisposes individuals to bacteraemia and can account for more than half of all cases of bacteraemia in malaria-endemic areas. Interventions to control malaria will have a major additional benefit by reducing the burden of invasive bacterial disease. FUNDING: Wellcome Trust

    Setting an International Research Agenda for Fear of Cancer Recurrence: an online delphi consensus study

    Get PDF
    This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permissionBackground: Fear of cancer recurrence (FCR) is common amongst cancer survivors. There is rapidly growing research interest in FCR but a need to prioritise research to address the most pressing clinical issues and reduce duplication and fragmentation of effort. This study aimed to establish international consensus among clinical and academic FCR experts regarding priorities for FCR research. Methods: Members of the International Psycho-oncology Society (IPOS) Fear of Cancer Recurrence Special Interest Group (FORwards) were invited to participate in an online Delphi study. Research domains identified in Round 1 were presented and discussed at a focus group (Round 2) to consolidate the domains and items prior to presentation in further survey rounds (Round 3) aimed at gaining consensus on research priorities of international significance. Results: Thirty four research items were identified in Round 1 and 33 of the items were consolidated into 6 overarching themes through a focus group discussion with FCR experts. The 33 research items were presented in subsequent rounds of the delphi technique. Twenty one participants contributed to delphi round 1, 16 in round 2 and 25 and 29 participants for subsequent delphi rounds. Consensus was reached for 27 items in round 3.1. A further 4 research items were identified by panellists and included in round 3.2. After round 3.2, 35 individual research items were ratified by the panellists. Given the high levels of consensus and stability between rounds no further rounds were conducted. Overall intervention research was considered the most important focus for FCR research. Panellists identified models of care that facilitate greater access to FCR treatment and evaluation of the effectiveness of FCR interventions in real world settings as the two research items of highest priority. Defining the mechanisms of action and active components across FCR/P interventions, was the third highest priority identified. Conclusions: The findings of this study outline a research agenda for international FCR research. Intervention research to identify models of care that increase access to treatment, are based on a flexible approach based on symptom severity and can be delivered within routine clinical care, were identified as research areas to prioritise. Greater understanding of the active components and mechanisms of action of existing FCR interventions will facilitate increased tailoring of interventions to meet patient need

    Rapid genome sequencing for pediatrics

    Get PDF
    The advancements made in next‐generation sequencing (NGS) technology over the past two decades have transformed our understanding of genetic variation in humans and had a profound impact on our ability to diagnose patients with rare genetic diseases. In this review, we discuss the recently developed application of rapid NGS techniques, used to diagnose pediatric patients with suspected rare diseases who are critically ill. We highlight the challenges associated with performing such clinical diagnostics tests in terms of the laboratory infrastructure, bioinformatic analysis pipelines, and the ethical considerations that need to be addressed. We end by looking at what future developments in this field may look like and how they can be used to augment the genetic data to further improve the diagnostic rates for these high‐priority patients

    Robust and Generalisable Segmentation of Subtle Epilepsy-causing Lesions: a Graph Convolutional Approach

    Full text link
    Focal cortical dysplasia (FCD) is a leading cause of drug-resistant focal epilepsy, which can be cured by surgery. These lesions are extremely subtle and often missed even by expert neuroradiologists. "Ground truth" manual lesion masks are therefore expensive, limited and have large inter-rater variability. Existing FCD detection methods are limited by high numbers of false positive predictions, primarily due to vertex- or patch-based approaches that lack whole-brain context. Here, we propose to approach the problem as semantic segmentation using graph convolutional networks (GCN), which allows our model to learn spatial relationships between brain regions. To address the specific challenges of FCD identification, our proposed model includes an auxiliary loss to predict distance from the lesion to reduce false positives and a weak supervision classification loss to facilitate learning from uncertain lesion masks. On a multi-centre dataset of 1015 participants with surface-based features and manual lesion masks from structural MRI data, the proposed GCN achieved an AUC of 0.74, a significant improvement against a previously used vertex-wise multi-layer perceptron (MLP) classifier (AUC 0.64). With sensitivity thresholded at 67%, the GCN had a specificity of 71% in comparison to 49% when using the MLP. This improvement in specificity is vital for clinical integration of lesion-detection tools into the radiological workflow, through increasing clinical confidence in the use of AI radiological adjuncts and reducing the number of areas requiring expert review.Comment: accepted at MICCAI 202
    corecore