487 research outputs found
Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium
Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound‐associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE (2)) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β‐catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE (2)‐Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE (2) and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury
Kinks in the discrete sine-Gordon model with Kac-Baker long-range interactions
We study effects of Kac-Baker long-range dispersive interaction (LRI) between
particles on kink properties in the discrete sine-Gordon model. We show that
the kink width increases indefinitely as the range of LRI grows only in the
case of strong interparticle coupling. On the contrary, the kink becomes
intrinsically localized if the coupling is under some critical value.
Correspondingly, the Peierls-Nabarro barrier vanishes as the range of LRI
increases for supercritical values of the coupling but remains finite for
subcritical values. We demonstrate that LRI essentially transforms the internal
dynamics of the kinks, specifically creating their internal localized and
quasilocalized modes. We also show that moving kinks radiate plane waves due to
break of the Lorentz invariance by LRI.Comment: 11 pages (LaTeX) and 14 figures (Postscript); submitted to Phys. Rev.
Nonadiabatic effects in a generalized Jahn-Teller lattice model: heavy and light polarons, pairing and metal-insulator transition
The ground state polaron potential of 1D lattice of two-level molecules with
spinless electrons and two Einstein phonon modes with quantum phonon-assisted
transitions between the levels is found anharmonic in phonon displacements. The
potential shows a crossover from two nonequivalent broad minima to a single
narrow minimum corresponding to the level positions in the ground state.
Generalized variational approach implies prominent nonadiabatic effects:(i) In
the limit of the symmetric E-e Jahn- Teller situation they cause transition
between the regime of the predominantly one-level "heavy" polaron and a "light"
polaron oscillating between the levels due to phonon assistance with almost
vanishing polaron displacement. It implies enhancement of the electron transfer
due to decrease of the "heavy" polaron mass (undressing) at the point of the
transition. Pairing of "light" polarons due to exchange of virtual phonons
occurs. Continuous transition to new energy ground state close to the
transition from "heavy" polaron phase to "light" (bi)polaron phase occurs. In
the "heavy" phase, there occurs anomalous (anharmonic) enhancements of quantum
fluctuations of the phonon coordinate, momentum and their product as functions
of the effective coupling. (ii) Dependence of the polaron mass on the optical
phonon frequency appears.(iii) Rabi oscillations significantly enhance quantum
shift of the insulator-metal transition line to higher values of the critical
effective e-ph coupling supporting so the metallic phase. In the E-e JT case,
insulator-metal transition coincide with the transition between the "heavy" and
the "light" (bi)polaron phase at certain (strong) effective e-ph interaction.Comment: Paper in LaTex format (file jtseptx.tex) and 9 GIF-figures
(ppic_1.gif,...ppic_9.gif
Quantum Monte Carlo study of the one-dimensional Holstein model of spinless fermions
The Holstein model of spinless fermions interacting with dispersionless
phonons in one dimension is studied by a Green's function Monte Carlo
technique. The ground state energy, first fermionic excited state, density wave
correlations, and mean lattice displacement are calculated for lattices of up
to 16 sites, for one fermion per two sites, i.e., a half-filled band. Results
are obtained for values of the fermion hopping parameter of ,
, and where is the phonon frequency. At a finite
fermion-phonon coupling there is a transition from a metallic phase to an
insulating phase in which there is charge-density-wave order. Finite size
scaling is found to hold in the metallic phase and is used to extract the
coupling dependence of the Luttinger liquid parameters, and ,
the velocity of charge excitations and the correlation exponent, respectively.
For free fermions () and for strong coupling () our
results agree well with known analytic results. For and
our results are inconsistent with the metal-insulator transition being a
Kosterlitz-Thouless transition.\\Comment: 16 pages of ReVTeX, 11 figures in uuencoded compressed tar file.
Minor changes to text. Our results are inconsistent with the metal-insulator
transition studied being a Kosterlitz-Thouless transition. The figures are
now in the correct order. To appear in Physical Review B, April 15, 199
Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-
In a sample of 471 million BB events collected with the BABAR detector at the
PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is
either e+e- or mu+mu-. We report results on partial branching fractions and
isospin asymmetries in seven bins of di-lepton mass-squared. We further present
CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi
resonance. We find no evidence for CP or lepton-flavor violation. The partial
branching fractions and isospin asymmetries are consistent with the Standard
Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.
Recommended from our members
Precise Measurement of the e+ e- --> pi+ pi- (gamma) Cross Section with the Initial-State Radiation Method at BABAR
A precise measurement of the cross section of the process
from threshold to an energy of 3GeV is obtained
with the initial-state radiation (ISR) method using 232fb of data
collected with the BaBar detector at center-of-mass energies near
10.6GeV. The ISR luminosity is determined from a study of the leptonic process
, which is found to agree with the
next-to-leading-order QED prediction to within 1.1%. The cross section for the
process is obtained with a systematic uncertainty
of 0.5% in the dominant resonance region. The leading-order hadronic
contribution to the muon magnetic anomaly calculated using the measured
cross section from threshold to 1.8GeV is .Comment: 58 pages, 56 figures, to be submitted to Phys. Rev.
Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons
We present improved measurements of CP-violation parameters in the decays
, , and , and of
the branching fractions for and . The
results are obtained with the full data set collected at the
resonance by the BABAR experiment at the PEP-II asymmetric-energy factory
at the SLAC National Accelerator Laboratory, corresponding to
million pairs. We find the CP-violation parameter values and
branching fractions where in each case, the first uncertainties are statistical
and the second are systematic. We observe CP violation with a significance of
6.7 standard deviations for and 6.1 standard deviations for
, including systematic uncertainties. Constraints on the
Unitarity Triangle angle are determined from the isospin relations
among the rates and asymmetries. Considering only the solution
preferred by the Standard Model, we find to be in the range
at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.
Search for lepton-number violating processes in B+ -> h- l+ l+ decays
We have searched for the lepton-number violating processes B+ -> h- l+ l+
with h- = K-/pi- and l+ = e+/mu+, using a sample of 471+/-3 million BBbar
events collected with the BaBar detector at the PEP-II e+e- collider at the
SLAC National Accelerator Laboratory. We find no evidence for these decays and
place 90% confidence level upper limits on their branching fractions Br(B+ ->
pi- e+ e+) K- e+ e+) pi-
mu+ mu+) K- mu+ mu+) < 6.7 x 10^{-8}.Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D. R
Improved Limits on decays to invisible final states
We establish improved upper limits on branching fractions for B0 decays to
final States 10 where the decay products are purely invisible (i.e., no
observable final state particles) and for final states where the only visible
product is a photon. Within the Standard Model, these decays have branching
fractions that are below the current experimental sensitivity, but various
models of physics beyond the Standard Model predict significant contributions
for these channels. Using 471 million BB pairs collected at the Y(4S) resonance
by the BABAR experiment at the PEP-II e+e- storage ring at the SLAC National
Accelerator Laboratory, we establish upper limits at the 90% confidence level
of 2.4x10^-5 for the branching fraction of B0-->Invisible and 1.7x10^-5 for the
branching fraction of B0-->Invisible+gammaComment: 8 pages, 3 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Recommended from our members
Measurement of the Time-Dependent CP Asymmetry of Partially Reconstructed B0->D*+D*- Decays
We present a new measurement of the time-dependent CP asymmetry of B0->D*+D*-
decays using (471+-5) million BBbar pairs collected with the BaBar detector at
the PEP-II B Factory at the SLAC National Accelerator Laboratory. Using the
technique of partial reconstruction, we measure the time-dependent CP asymmetry
parameters S=-0.34+-0.12+-0.05$ and C=+0.15+-0.09+-0.04. Using the value for
the CP-odd fraction R_perp=0.158+-0.028+-0.006, previously measured by BaBar
with fully reconstructed B0->D*+D*- events, we extract the CP-even components
S+=-0.49+-0.18+-0.07+-0.04 and C+=+0.15+-0.09+-0.04. In each case, the first
uncertainty is statistical and the second is systematic; the third uncertainty
on S+ is the contribution from the uncertainty on R_perp. The measured value of
the CP-even component S+ is consistent with the value of sin(2Beta) measured in
b->(ccbar)s transitions, and with the Standard Model expectation of small
penguin contributions.Comment: 17 pages, 7 figures, submitted to Physical Review
- …
